[1]
T. Matsumoto, Development of near-β high strength Ti alloy Ti-5Al-2Sn-4Zr-3Cr-3Mo with superior fatigue crack growth properties, Materials Science and Engineering A213 (1996) 154-156.
DOI: 10.1016/0921-5093(96)10238-0
Google Scholar
[2]
Y.Y. Fu, Y.Q. Song, S.X. Hui, X.J. Mi, Research and Application of Typical Aerospace Titanium Alloys, Chinese of Rare Metals 30 (2006) 850-856.
Google Scholar
[3]
J.H. Qian, Application and Development of New Titanium Alloys for Aerospace, Chinese of Rare Metals 24 (2000) 218-223.
Google Scholar
[4]
O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, C.H. Ward, Aging response of coarse- and fine-grained β titanium alloys, Materials Science and Engineering A405 (2005) 296-305.
DOI: 10.1016/j.msea.2005.06.027
Google Scholar
[5]
O.P. Karasevskaya, O.M. Ivasishin, S.L. Semiatin, Y.V. Matviychuk, Deformation behavior of beta-titanium alloys, Materials Science and Engineering A354 (2003) 121-132.
DOI: 10.1016/s0921-5093(02)00935-8
Google Scholar
[6]
M. Kocan, H.J. Rack, L. Wagner, Fatigue Performance of Metastable β Titanium Alloys: Effects of Microstructure and Surface Finish, Journal of Materials Engineering and Performance 14 (2005)765-772.
DOI: 10.1361/105994905x75583
Google Scholar
[7]
R.R. Boyer, R.D. Briggs, The Use of Titanium Alloys in the Aerospace Industry, Journal of Materials Engineering and Performance 14 (2005) 681-685.
DOI: 10.1361/105994905x75448
Google Scholar
[8]
R.R. Boyer, An overview on the use of titanium in the aerospace industry, Materials Science and Engineering A213 (1996) 103-114.
Google Scholar
[9]
S.L. Nyakana, J.C. Fanning, R.R. Boyer, Quick Reference Guide for Titanium Alloys in the 00s, Journal of Materials Engineering and Performance 14 (2005) 799-811.
DOI: 10.1361/105994905x75646
Google Scholar
[10]
B.F. Jia, Y. Yang, G.E. Peng, G.J. Yang, Study on Relationship Between Room-temperature Properties of TCl8 Titanium Alloy and Structure Character of α Phase, Hot Working Technology 40 (2011) 4-6.
Google Scholar
[11]
X.Y. Wang, J.J. Liu, J.F. Lei, M.Z. Cao, Y.Y. Liu, Effects of primary and secondary α phase on tensile property and fracture toughness of Ti-1023 alloy, Acta Metallurgica Sinica 43 (2007) 1129-1137.
Google Scholar
[12]
O.M. Ivasishin, P.E. Markovsky, Yu.V. Matviychuk, S.L. Semiatin, C.H. Ward, S. Fox, A comparative study of the mechanical properties of high-strength β-titanium alloys, Journal of Alloys and Compounds 457 (2008) 296-309.
DOI: 10.1016/j.jallcom.2007.03.070
Google Scholar
[13]
S. Ankem, C.A. Greene, Recent developments in microstructure: property relationships of beta titanium alloys, Materials Science and Engineering 263 (1999) 127-131.
DOI: 10.1016/s0921-5093(98)01170-8
Google Scholar
[14]
N. Clément, A. Lenain, P.J. Jacques, Mechanical Property Optimization via Microstructural Control of New Metastable Beta Titanium Alloys, Processing and Characterizing Titanium Alloys (2007) 50-53.
DOI: 10.1007/s11837-007-0010-y
Google Scholar
[15]
A. Bhattacharjee, V.K. Varma, S.V. Kamat, A.K. Gogia, S. Bhargava, Influence of b Grain Size on Tensile Behavior and Ductile Fracture Toughness of Titanium Alloy Ti-10V-2Fe-3Al, Metallurgical and Materials Transactions 37A (2006) 1423-1433.
DOI: 10.1007/s11661-006-0087-x
Google Scholar
[16]
P. Laheurte, A. Eberhardt, M.J. Philippe, Influence of the microstructure on the pseudoelasticity of a metastable beta titanium alloy, Materials Science and Engineering A396 (2005) 223-230.
DOI: 10.1016/j.msea.2005.01.022
Google Scholar
[17]
Xinnan Wang. Research of Microstructure and property of a new metastable β titanium alloy[J]. Materials Science Forum. 2013, 747-748, 932-936.
DOI: 10.4028/www.scientific.net/msf.747-748.932
Google Scholar
[18]
Yue Fei. β Grain growth kinetic of a new metastable β titanium alloy. Materials Science Forum. 2013, 747-748.
Google Scholar
[19]
Zhe Wang. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy. Journal of Alloys and Compounds 692, 2017, 149-154.
DOI: 10.1016/j.jallcom.2016.09.012
Google Scholar
[20]
Zhe Wang. Influence of aging treatment on microstructure and mechanical properties of a new high strength TB17 titanium alloy. International conference on Materials, Machinery, Electrical Engineering. 2016, 273-279.
DOI: 10.2991/ameii-16.2016.76
Google Scholar