[1]
K. Hanada, K. Matsuzaki, X.S. Huang, et al., Fabrication of Mg alloy tubes for biodegradable stent application, Mater. Sci. Eng C. 33 (2013) 4746-4750.
DOI: 10.1016/j.msec.2013.07.033
Google Scholar
[2]
S.J. Zhu, Q. Liu, Y.F. Qian, et al., Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg-Zn-Y-Nd alloy for cardiovascular stent application, Front. Mater. Sci. 8 (2014) 256-263.
DOI: 10.1007/s11706-014-0259-3
Google Scholar
[3]
Q. Wu, S.J. Zhu, L.G. Wang, et al., The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y alloy for vascular stent application, J. Mech. Behav. Biomed. 8 (2012) 1-7.
Google Scholar
[4]
M. Yang, D.B. Liu, R.F. Zhang, et al., Microstructure and properties of Mg-3Zn-0.2Ca alloy for biomedical application, Rare. Metal. Mat. Eng. 47 (2018) 0093-0098.
Google Scholar
[5]
Z.M Zhang, Z.M. Yan, Y. Du, et al., Hot deformation behavior of homogenized Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr alloy via hot compression tests, Materials. 11 (2018) 2282.
DOI: 10.3390/ma11112282
Google Scholar
[6]
S. Amani, G. Faraji, H.K. Mehrabadi, et a., Manufacturing and mechanical characterization of Mg-4Y-0.4Zr-0.25La magnesium microtubes by combined severe plastic deformation process for biodegradable vascular stents, P. I. Mech. Eng B-J. Eng. 233 (2019) 1196-1205.
DOI: 10.1177/0954405418774600
Google Scholar
[7]
Q. Ge, D. Dellasega, A.G. Demir, et al., The processing of ultrafine-grained Mg tubes for biodegradable stents, Acta Biomater. 9 (2013) 8604-8610.
DOI: 10.1016/j.actbio.2013.01.010
Google Scholar
[8]
S. Amani, G. Faraji, H. Kazemi Mehrabadi, etal., A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application, J. Alloy. Compd. 723 (2017) 467-476.
DOI: 10.1016/j.jallcom.2017.06.201
Google Scholar
[9]
G. Faraji, P. Yavari, S. Aghdamifar, et al., Mechanical and microstructure properties of ultra-fine grained AZ91 magnesium alloy tubes processed via multi pass tubular channel angular pressing (TCAP), J. Mater. Sci. Technol. 30 (2014) 134-138.
DOI: 10.1016/j.jmst.2013.08.010
Google Scholar
[10]
Z.M. Yan, M. Fang, Z.D. Lian, et al., Research on AZ80+0.4%Ce (wt %) ultra-thin-walled tubes of magnesium alloys: The forming process, microstructure evolution and mechanical properties, 9 (2019) 563.
DOI: 10.3390/met9050563
Google Scholar
[11]
G.S. Zhang, Z.M. Zhang, X.B. Li, et al., Effects of repetitive upsetting-extrusion parameters on microstructure and texture evolution of Mg-Gd-Y-Zn-Zr alloy, J. Alloy, Compd. 790 (2019) 48-57.
DOI: 10.1016/j.jallcom.2019.03.207
Google Scholar
[12]
I. Nikulin, A. Kipelova, S. Malopheyev, et al., Effect of second phase particles on grain refinement during equal-channel angular pressing of an Al-Mg-Mn alloy, Acta. Mater. 60 (2012) 487-497.
DOI: 10.1016/j.actamat.2011.10.023
Google Scholar
[13]
Y. Du, Z.M. Zhang, G.S. Zhang, et al., Grain refinement and texture evolution of Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion at decreasing temperature, 47 (2018) 1422-1428.
DOI: 10.1016/s1875-5372(18)30144-9
Google Scholar
[14]
Q.F. Zhu, G.S. Wang, E.G. Zhang, et al., Dynamic and static aging precipitation of β-Mg17Al12 in the AZ80 magnesium alloy during multi-directional forging and subsequent aging, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 941-948.
DOI: 10.1007/s40195-017-0575-6
Google Scholar
[15]
X.J. Zhou, C.M. Liu, Y.H. Gao, et al., Hot compression behavior of the Mg-Gd-Y-Zn-Zr alloy filled with intragranular long-period stacking ordered phases, J. Alloy. Compd. 724 (2017) 528-536.
DOI: 10.1016/j.jallcom.2017.07.088
Google Scholar