Microstructure and Texture Evolution of 0.6 mm Ultra-Thin-Walled Tubes of Magnesium Alloys Fabricated by Multi-Pass Variable Wall Thickness Extrusion (VWTE)

Article Preview

Abstract:

AZ80+0.4%Ce alloy ultra-thin-walled tube with a wall thickness of 0.6 mm was fabricated by multi-pass variable wall thickness extrusion (VWTE) at 693 K. Microsturcture and texture evolution were investigated. The results indicate that the average grain size decreases from ~47 μm of extruded alloy to ~8.9 μm after 5 passes VWTE. The total area reduction of Mg alloy tube is 91 %. Homogeneity of microstructure is improved obviously and the morphology of Mg17Al12 phases in coarse grains and fine DRXed grains exhibit lamellar and granular shapes, respectively. In addition to the microstructure evolution, the VWTEed tubes showed a strong texture of (0001) planes, and the intensity decreased with deformation increasing to 4 passes. After 5p-VWTE, a strong texture characterized by (0001) pole tilting 20 degrees rotated from extrusion direction (ED) towards normal direction (ND).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

427-433

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Hanada, K. Matsuzaki, X.S. Huang, et al., Fabrication of Mg alloy tubes for biodegradable stent application, Mater. Sci. Eng C. 33 (2013) 4746-4750.

DOI: 10.1016/j.msec.2013.07.033

Google Scholar

[2] S.J. Zhu, Q. Liu, Y.F. Qian, et al., Effect of different processings on mechanical property and corrosion behavior in simulated body fluid of Mg-Zn-Y-Nd alloy for cardiovascular stent application, Front. Mater. Sci. 8 (2014) 256-263.

DOI: 10.1007/s11706-014-0259-3

Google Scholar

[3] Q. Wu, S.J. Zhu, L.G. Wang, et al., The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y alloy for vascular stent application, J. Mech. Behav. Biomed. 8 (2012) 1-7.

Google Scholar

[4] M. Yang, D.B. Liu, R.F. Zhang, et al., Microstructure and properties of Mg-3Zn-0.2Ca alloy for biomedical application, Rare. Metal. Mat. Eng. 47 (2018) 0093-0098.

Google Scholar

[5] Z.M Zhang, Z.M. Yan, Y. Du, et al., Hot deformation behavior of homogenized Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr alloy via hot compression tests, Materials. 11 (2018) 2282.

DOI: 10.3390/ma11112282

Google Scholar

[6] S. Amani, G. Faraji, H.K. Mehrabadi, et a., Manufacturing and mechanical characterization of Mg-4Y-0.4Zr-0.25La magnesium microtubes by combined severe plastic deformation process for biodegradable vascular stents, P. I. Mech. Eng B-J. Eng. 233 (2019) 1196-1205.

DOI: 10.1177/0954405418774600

Google Scholar

[7] Q. Ge, D. Dellasega, A.G. Demir, et al., The processing of ultrafine-grained Mg tubes for biodegradable stents, Acta Biomater. 9 (2013) 8604-8610.

DOI: 10.1016/j.actbio.2013.01.010

Google Scholar

[8] S. Amani, G. Faraji, H. Kazemi Mehrabadi, etal., A combined method for producing high strength and ductility magnesium microtubes for biodegradable vascular stents application, J. Alloy. Compd. 723 (2017) 467-476.

DOI: 10.1016/j.jallcom.2017.06.201

Google Scholar

[9] G. Faraji, P. Yavari, S. Aghdamifar, et al., Mechanical and microstructure properties of ultra-fine grained AZ91 magnesium alloy tubes processed via multi pass tubular channel angular pressing (TCAP), J. Mater. Sci. Technol. 30 (2014) 134-138.

DOI: 10.1016/j.jmst.2013.08.010

Google Scholar

[10] Z.M. Yan, M. Fang, Z.D. Lian, et al., Research on AZ80+0.4%Ce (wt %) ultra-thin-walled tubes of magnesium alloys: The forming process, microstructure evolution and mechanical properties, 9 (2019) 563.

DOI: 10.3390/met9050563

Google Scholar

[11] G.S. Zhang, Z.M. Zhang, X.B. Li, et al., Effects of repetitive upsetting-extrusion parameters on microstructure and texture evolution of Mg-Gd-Y-Zn-Zr alloy, J. Alloy, Compd. 790 (2019) 48-57.

DOI: 10.1016/j.jallcom.2019.03.207

Google Scholar

[12] I. Nikulin, A. Kipelova, S. Malopheyev, et al., Effect of second phase particles on grain refinement during equal-channel angular pressing of an Al-Mg-Mn alloy, Acta. Mater. 60 (2012) 487-497.

DOI: 10.1016/j.actamat.2011.10.023

Google Scholar

[13] Y. Du, Z.M. Zhang, G.S. Zhang, et al., Grain refinement and texture evolution of Mg-Gd-Y-Zn-Zr alloy processed by repetitive upsetting-extrusion at decreasing temperature, 47 (2018) 1422-1428.

DOI: 10.1016/s1875-5372(18)30144-9

Google Scholar

[14] Q.F. Zhu, G.S. Wang, E.G. Zhang, et al., Dynamic and static aging precipitation of β-Mg17Al12 in the AZ80 magnesium alloy during multi-directional forging and subsequent aging, Acta Metall. Sin. (Engl. Lett.) 30 (2017) 941-948.

DOI: 10.1007/s40195-017-0575-6

Google Scholar

[15] X.J. Zhou, C.M. Liu, Y.H. Gao, et al., Hot compression behavior of the Mg-Gd-Y-Zn-Zr alloy filled with intragranular long-period stacking ordered phases, J. Alloy. Compd. 724 (2017) 528-536.

DOI: 10.1016/j.jallcom.2017.07.088

Google Scholar