Progresses on Development of Manufacturing Methods of High Purity Tungsten Targets

Article Preview

Abstract:

Tungsten has many excellent properties such as high melting point, high electrical conductivity, high electromigration resistance, high electron emission coefficient, high thermal stability and so on. Because of these excellent properties, high purity tungsten targets have wide applications and development prospects in the integrated circuit (IC) industry. In this paper, some manufacturing methods of tungsten targets was summarized and analyzed. The high melting point of tungsten makes powder metallurgy (PM) be the manufacturing methods of tungsten targets. After preforming of the tungsten powders, some sintering and densification processes like atmosphere pressure sintering, Hot Pressing (HP), Hot Isostatic Pressing(HIP) have been carried out. The grain size and the density of the tungsten targets is different by different manufacturing methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

414-420

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.Z. Ma, Y. Liu, W.S. Liu, L.P. Long, S.H. Liu, Principles and the Latest Development of Preparation Processes of High Purity Tungsten, J. Rare Metals and Cemented Carbides. 41.04 (2013): 5-9.

Google Scholar

[2] F. Liu, G.N. Luo, Q. Li, W.J. Wang, Application of Tungsten as a Plasma-facing Material in Nuclear Fusion Reactors, J. China Tungsten Industry. 32.02 (2017):41-48+55.

Google Scholar

[3] Y. Yu, F.P. Song, B. Feng, A.L. Zheng, F.S. Peng, Ultra-high Purity Tungsten and its Applications, J. International Journal of Refractory Metals & Hard Materials. 53 (2015):98-103.

DOI: 10.1016/j.ijrmhm.2015.05.014

Google Scholar

[4] J. Sarkar. Chapter 5 - Sputtering Targets and Thin Films for Integrated Circuits, in: Sputtering Materials for Vlsi & Thin Film Devices. 2014, pp.313-322.

DOI: 10.1016/b978-0-8155-1593-7.00005-9

Google Scholar

[5] C.F. Lo, P. Mcdonald, D. Draper, P. Gilman, Influence of Tungsten Sputtering Target Density on Physical Vapor Deposition Thin Film Properties, J. Journal of Electronic Materials. 34.12 (2005):1468-1473.

DOI: 10.1007/s11664-005-0152-z

Google Scholar

[6] X.Y. Wei, Preparation Technology and Application of High Purity Tungsten Target for Semiconductor, J. Cemented Carbide. 34.05 (2017) :353-359.

Google Scholar

[7] G.B., Jia, Y.N. Feng, Y. Jia, Manufacture, Application and Development of Refractorymetal Target Used on Magnetron Sputtering, J. Metallic Functional Materials. 23.06 (2016): 48-52.

Google Scholar

[8] Information on https://www.espimetals.com/index.php/online-catalog/467-Tungsten.

Google Scholar

[9] J. Sarkar. Chapter 4 - Sputtering Target Manufacturing, in: Sputtering Materials for Vlsi & Thin Film Devices. 2014, pp.215-258.

DOI: 10.1016/b978-0-8155-1593-7.00004-7

Google Scholar

[10] Information on https://www.plansee.com/en/materials/tungsten.html.

Google Scholar

[11] D.Q. Tan, The Influence of Impurity Elements on Structure and Performance of Tungsten Products, J. Materials Review 27 (2013):98-100.

Google Scholar

[12] F. Zheng, Effects of Several Metal Elements on the Particle Size of W Powder, J. Cemented Carbide 03 (1995):143-145.

Google Scholar

[13] S. Suzuki, H. Miyashita, Japan. Patent. 2001098364. (2001).

Google Scholar

[14] T. Shibuya, S. Teramoto, S. Matsuo, S. Sakaguchi, Japan. Patent.WO2005073418. (2005).

Google Scholar

[15] H.T. Wang, Sinter-ability of nanocrystalline tungsten powder, J. International Journal of Refractory Metals & Hard Materials 28.2(2010):312-316.

DOI: 10.1016/j.ijrmhm.2009.11.003

Google Scholar

[16] L.J. Yao, J. Pan, China. Patent. CN102343437. (2014).

Google Scholar

[17] L.J. Yao, A. Toshio, O. Kazuhiko, China. Patent. CN103567444. (2016).

Google Scholar

[18] M. Nakahata, China. Patent. CN103124804. (2015).

Google Scholar

[19] X.Y. Wei, J.B. Huang, J.Z. Long, China. Patent. CN103805952. (2016).

Google Scholar

[20] X.H. Qu, X.Y. Li, China. Patent. CN109047780. (2018).

Google Scholar