Microstructures and Phase Formation of Refractory MoNbTaVZr High Entropy Alloy

Article Preview

Abstract:

Microstructures, component distribution and mechanical properties of a refractory high entropy alloy MoNbTaVZr were investigated by scanning electron microscope, X-ray diffractometer and universal testing machine, and the formation rule of second phases in as-cast alloy was discussed by the results of first principle calculations. The results show that as-cast MoNbTaVZr alloy is composed of two solid solutions with body centered cubic structure, together with Mo2Zr and an unknown phase. The chemical compositions of dendritic regions are relatively uniform, while Zr and V elements are rich in interdendritic regions. There is a short yielding phase when as-cast alloy was operated by the compression. According to calculations, the C15 Mo2Zr Laves phase with the strongest formation ability and highest structural stability would be formed preferentially in MoNbTaVZr refractory high entropy alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

384-390

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[3] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.

DOI: 10.1126/science.1254581

Google Scholar

[4] M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (2014) 107-123.

Google Scholar

[5] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18 (2010) 1758-1765.

DOI: 10.1016/j.intermet.2010.05.014

Google Scholar

[6] O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043-6048.

DOI: 10.1016/j.jallcom.2011.02.171

Google Scholar

[7] A. Poulia, E. Georgatis, A. Lekatou, A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract. Met. H. 57 (2016) 50-63.

DOI: 10.1016/j.ijrmhm.2016.02.006

Google Scholar

[8] M.G. Poletti, G. Fiore, B.A. Szost, L. Battezzati, Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn), J. Alloys Compd. 620 (2015) 283-288.

DOI: 10.1016/j.jallcom.2014.09.145

Google Scholar

[9] Y. Mu, H. Liu, Y. Liu, X. Zhang, Y. Jiang, T. Dong, An ab initio and experimental studies of the structure, mechanical parameters and state density on the refractory high-entropy alloy systems, J. Alloys Compd. 714 (2017) 668-680.

DOI: 10.1016/j.jallcom.2017.04.237

Google Scholar

[10] C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, J. Alloys Compd. 583 (2014) 162-169.

DOI: 10.1016/j.jallcom.2013.08.102

Google Scholar

[11] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[12] M. Marlo, V. Milman, Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals, Phys. Rev. B 62B (2000) 2899-2907.

DOI: 10.1103/physrevb.62.2899

Google Scholar

[13] J.A. White, D.M. Bird, Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations, Phys. Rev. B 50B (1994) 4954-4957.

DOI: 10.1103/physrevb.50.4954

Google Scholar

[14] H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd. 696 (2017) 1139-1150.

DOI: 10.1016/j.jallcom.2016.11.188

Google Scholar

[15] O. N. Senkov, C. Woodward, D.B. Miracle, Microstructure and Properties of Aluminum Containing Refractory High-Entropy Alloys, JOM 66(10) (2014) 2030-2042.

DOI: 10.1007/s11837-014-1066-0

Google Scholar

[16] R. J. Perez, B. Sundman, Thermodynamic assessment of the Mo-Zr binary phase diagram, CALPHAD 27 (2003) 253-262.

DOI: 10.1016/j.calphad.2003.09.003

Google Scholar

[17] K. Foster, J. E. Hightower, R. G. Leisuret, A. V. Skripov, Elastic moduli of the C15 Laves phase materials TaV2, TaV2H(D)x and ZrCr2, Philos. Mag. B, 80 (2000) 1667-1679.

DOI: 10.1080/13642810008205755

Google Scholar

[18] X. Zhang, L. Chen, M. Ma, Y. Zhu, S. Zhang, R. Liu, Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure, J. Appl. Phys. 109 (2011) 113523.

DOI: 10.1063/1.3590707

Google Scholar

[19] B.R. Sahu, Electronic structure and bonding of ultralight LiMg, Mater. Sci. Eng. B 49 (1997) 74-78.

Google Scholar

[20] M.I. Medvedeva, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryasov, A.J. Freeman, Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl, Acta Mater. 46 (1998) 3433-3442.

DOI: 10.1016/s1359-6454(98)00042-1

Google Scholar

[21] Z.S. Nong, J.C. Zhu, R.D. Zhao, Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys, Intermetallics 86 (2017) 134-146.

DOI: 10.1016/j.intermet.2017.03.014

Google Scholar