[1]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448-511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[3]
B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science 345 (2014) 1153-1158.
DOI: 10.1126/science.1254581
Google Scholar
[4]
M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (2014) 107-123.
Google Scholar
[5]
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18 (2010) 1758-1765.
DOI: 10.1016/j.intermet.2010.05.014
Google Scholar
[6]
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, C.F. Woodward, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloys Compd. 509 (2011) 6043-6048.
DOI: 10.1016/j.jallcom.2011.02.171
Google Scholar
[7]
A. Poulia, E. Georgatis, A. Lekatou, A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract. Met. H. 57 (2016) 50-63.
DOI: 10.1016/j.ijrmhm.2016.02.006
Google Scholar
[8]
M.G. Poletti, G. Fiore, B.A. Szost, L. Battezzati, Search for high entropy alloys in the X-NbTaTiZr systems (X = Al, Cr, V, Sn), J. Alloys Compd. 620 (2015) 283-288.
DOI: 10.1016/j.jallcom.2014.09.145
Google Scholar
[9]
Y. Mu, H. Liu, Y. Liu, X. Zhang, Y. Jiang, T. Dong, An ab initio and experimental studies of the structure, mechanical parameters and state density on the refractory high-entropy alloy systems, J. Alloys Compd. 714 (2017) 668-680.
DOI: 10.1016/j.jallcom.2017.04.237
Google Scholar
[10]
C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, A.L. Zhang, Microstructure and oxidation behavior of new refractory high entropy alloys, J. Alloys Compd. 583 (2014) 162-169.
DOI: 10.1016/j.jallcom.2013.08.102
Google Scholar
[11]
D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41 (1990) 7892-7895.
DOI: 10.1103/physrevb.41.7892
Google Scholar
[12]
M. Marlo, V. Milman, Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals, Phys. Rev. B 62B (2000) 2899-2907.
DOI: 10.1103/physrevb.62.2899
Google Scholar
[13]
J.A. White, D.M. Bird, Implementation of gradient-corrected exchange-correlation potentials in Car-Parrinello total-energy calculations, Phys. Rev. B 50B (1994) 4954-4957.
DOI: 10.1103/physrevb.50.4954
Google Scholar
[14]
H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, M.C. Gao, Mechanical properties of refractory high-entropy alloys: Experiments and modeling, J. Alloys Compd. 696 (2017) 1139-1150.
DOI: 10.1016/j.jallcom.2016.11.188
Google Scholar
[15]
O. N. Senkov, C. Woodward, D.B. Miracle, Microstructure and Properties of Aluminum Containing Refractory High-Entropy Alloys, JOM 66(10) (2014) 2030-2042.
DOI: 10.1007/s11837-014-1066-0
Google Scholar
[16]
R. J. Perez, B. Sundman, Thermodynamic assessment of the Mo-Zr binary phase diagram, CALPHAD 27 (2003) 253-262.
DOI: 10.1016/j.calphad.2003.09.003
Google Scholar
[17]
K. Foster, J. E. Hightower, R. G. Leisuret, A. V. Skripov, Elastic moduli of the C15 Laves phase materials TaV2, TaV2H(D)x and ZrCr2, Philos. Mag. B, 80 (2000) 1667-1679.
DOI: 10.1080/13642810008205755
Google Scholar
[18]
X. Zhang, L. Chen, M. Ma, Y. Zhu, S. Zhang, R. Liu, Structural, elastic, and thermal properties of Laves phase ZrV2 under pressure, J. Appl. Phys. 109 (2011) 113523.
DOI: 10.1063/1.3590707
Google Scholar
[19]
B.R. Sahu, Electronic structure and bonding of ultralight LiMg, Mater. Sci. Eng. B 49 (1997) 74-78.
Google Scholar
[20]
M.I. Medvedeva, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryasov, A.J. Freeman, Ternary site preference energies, size misfits and solid solution hardening in NiAl and FeAl, Acta Mater. 46 (1998) 3433-3442.
DOI: 10.1016/s1359-6454(98)00042-1
Google Scholar
[21]
Z.S. Nong, J.C. Zhu, R.D. Zhao, Prediction of structure and elastic properties of AlCrFeNiTi system high entropy alloys, Intermetallics 86 (2017) 134-146.
DOI: 10.1016/j.intermet.2017.03.014
Google Scholar