[1]
Liu Y., Sun J., Zhou L., Tu Y., Xing F., Guo Y., Tong Q., Experiment Investigation of Deep-drawing Sheet Texture Evolution, J. Mater. Process. Tech.140 (2003) 509-513.
DOI: 10.1016/s0924-0136(03)00787-8
Google Scholar
[2]
Leyens C., Peters M., Titanium and Titanium Alloys, John Wiley & Sons, Hoboken,(2003).
Google Scholar
[3]
Lütjering G., Williams J.C., Titanium, Springer Berlin Heidelberg, Berlin, (2007).
Google Scholar
[4]
Bowen A.W., On the Importance of Crystallographic Texture in the Characterization of Alpha-based Titanium Alloys, Scripta. Mater.11 (1977) 0-21.
DOI: 10.1016/0036-9748(77)90005-9
Google Scholar
[5]
Gregory J.K., Brokmeier H.G., The Influence of Texture and Microstructure on Corrosion-fatigue in Ti-6Al-4V, Mater. Sci. Forum.5 (1994) 157-162.
DOI: 10.4028/www.scientific.net/msf.157-162.1971
Google Scholar
[6]
Bache M.R., Evans W.J., Suddell B., HerrouinF.R.M., The Effects of Texture in Titanium Alloys for Engineering Components under Fatigue, Int. J. Fatigue23 (2001) 153-159.
DOI: 10.1016/s0142-1123(01)00124-4
Google Scholar
[7]
Whittaker M.T., Considerations in Fatigue Lifing of Stress Concentrations in Textured Titanium 6-4, Int. J. Fatigue 33 (2011) 1384-1391.
DOI: 10.1016/j.ijfatigue.2011.05.001
Google Scholar
[8]
Uta E., Gey N., Bocher P., Humbert M., Gilgert J.,Texture Heterogeneities in αp/αs Titanium Forging Analysed by EBSD-Relation to Fatigue Crack Propagation, J. Microscopy 233 (2009) 451-459.
DOI: 10.1111/j.1365-2818.2009.03141.x
Google Scholar
[9]
Bantounas I., Dye D., Lindley T.C., The Role of Microtexture on the Faceted Fracture Morphology in Ti–6Al–4V Subjected to High-cycle fatigue, Acta. Mater.58 (2010) 3908-3918.
DOI: 10.1016/j.actamat.2010.03.036
Google Scholar
[10]
Bantounas I., Lindley T.C., Rugg D., Dye D., Effect of Microtexture on Fatigue Cracking in Ti–6Al–4V, Acta. Mater.55 (2007) 5655-5665.
DOI: 10.1016/j.actamat.2007.06.034
Google Scholar
[11]
Bridier F., Villechaise P., Mendez J., Slip and Fatigue Crack Formation Processes in an α/β Titanium Alloy in Relation to Crystallographic Texture on Different Scales, Acta. Mater.56 (2008) 3951-3962.
DOI: 10.1016/j.actamat.2008.04.036
Google Scholar
[12]
Bridier F., Villechaise P., Mendez J., Analysis of the Different Slip Systems Activated by Tension in a α/β Titanium Alloy in Relation with Local Crystallographic Orientation, Acta. Mater.53 (2005)555-567.
DOI: 10.1016/j.actamat.2004.09.040
Google Scholar
[13]
Pilchak A.L., Szczepanski C.J., Shaffer J.A., Salem A.A., Semiatin S.L., Characterization of Microstructure, Texture, and Microtexture in Near-alpha Titanium Mill Products, Metall. Mater. Trans. A44 (2013) 4881-4890.
DOI: 10.1007/s11661-013-1804-x
Google Scholar
[14]
Jha S.K., Szczepanski C.J., Golden P.J. PorterIII W.J., John R., Characterization of Fatigue Crack-initiation Facets in Relation to Lifetime Variability in Ti–6Al–4V, Int. J. Fatigue42 (2012) 248-257.
DOI: 10.1016/j.ijfatigue.2011.11.017
Google Scholar
[15]
Wu R., Study on the Texture Evolution and Anisotropy of TC1 titanium Alloy, Ph.D. Thesis,Shenyang Aerospace University, (2011).
Google Scholar
[16]
Boehlert C.J., Cowen C.J., Tamirisakandala S., McEldowney D.J., Miracle D.B., In Situ Scanning Electron Microscopy Observations of Tensile Deformation in a Boron-modified Ti–6Al–4V alloy, Scripta. Mater.55 (2006) 465-468.
DOI: 10.1016/j.scriptamat.2006.05.008
Google Scholar
[17]
Gao K., Chen Q., Chu W., Hsiao C.,In-situ Observation of Initiation and Propagation of Cleavage Microcracks in TiAl, J. Mater. Sci. Technol. 1 (1995) 11-14.
Google Scholar
[18]
Yin D.D., Elevated-temperature Deformation, Strengthening and Fracture Mechanisms in Cast Creep-resistant mg-11y-5gd-2zn-0.5zr(wt.%) magnesium alloy, Ph.D. Thesis, Shanghai Jiao Tong University, (2013).
Google Scholar
[19]
Zheng X., Zhang H., Experimental Determination of Deformation Induced Lattice Rotation by EBSD Technique for Slip System Analysis, J. Mater. Sci. Technol. 1 (2017) 90-98.
DOI: 10.1016/j.jmst.2016.01.010
Google Scholar
[20]
Li H., Boehlert C.J., Bieler T.R., Crimp M.A., Analysis of the Deformation Behavior in Tension and Tension-creep of Ti-3Al-2.5V at 296K and 728K (23°C and 455°C) using In Situ SEM Experiments, Metall. Mater. Trans. A, 45 (2014) 6053-6066.
DOI: 10.1007/s11661-014-2576-7
Google Scholar
[21]
He D., Quantitative Research on Micro-plastic Deformation Mechanism and Microstructure Evolution of Polycrystal-dual Phase Titanium Alloy, Ph.D. Thesis, Harbin Institute of Technology, (2012).
Google Scholar
[22]
Wang H., Boehlert C.J., Wang Q.D., Yin D.D., Ding W.J., In-situ Analysis of the Slip Activity During Tensile Deformation of Cast and Extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250°C, Mater.Charact.,116 (2016) 8-17.
DOI: 10.1016/j.matchar.2016.04.001
Google Scholar
[23]
Li H., Analysis of the Deformation Behavior of the Hexagonal Close-packed Alpha Phase in Titanium and Titanium Alloys, Ph.D. Thesis, Michigan State University, (2013).
Google Scholar
[24]
Glavicic M.G, Salem A.A, Semiatin S.L., X-ray Line-broadening Analysis of Deformation Mechanisms DuringRolling of Commercial-purity Titanium, Acta.Mater.,52 (2004) 647-655.
DOI: 10.1016/j.actamat.2003.10.025
Google Scholar
[25]
Liu Y X , Chen W , Li Z Q , et al. The HCF behavior and life variability of a Ti-6Al-4V alloy with transverse texture[J]. Int. J. Fatigue, 97(2017)79-87.
DOI: 10.1016/j.ijfatigue.2016.12.030
Google Scholar