In Situ Observation on the Deformation Behavior of Primary α-Ti in a Textured Ti-6Al-4V

Article Preview

Abstract:

The tensile deformation process and dislocation behavior of primary α-Ti of Ti-6Al-4V were studied by the in-situ tensile test combined with EBSD (electron backscatter diffraction). The initiation, evolution and distribution of dislocation slips at different strains were discussed. The results showed that the microtexture of the material had a significant influence on slip behavior. Typically, basal and prismatic <a> slips initiated first, but the dominant slip type was related to the local texture characteristics. Sometimes, the basal and prismatic <a> slips could still initiate when their Schmid factors were relatively low, while the pyramidal slips usually need a higher Schmid factor to initiate. With the increase of strain, the second slip system inside one grain was activated to accommodate the plastic deformation. When the deformation was localized in a specific microtextured region, basal <a> slips were dominant, but eventually the crack initiated from the <c+a> slip bands inside the grain.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

365-373

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu Y., Sun J., Zhou L., Tu Y., Xing F., Guo Y., Tong Q., Experiment Investigation of Deep-drawing Sheet Texture Evolution, J. Mater. Process. Tech.140 (2003) 509-513.

DOI: 10.1016/s0924-0136(03)00787-8

Google Scholar

[2] Leyens C., Peters M., Titanium and Titanium Alloys, John Wiley & Sons, Hoboken,(2003).

Google Scholar

[3] Lütjering G., Williams J.C., Titanium, Springer Berlin Heidelberg, Berlin, (2007).

Google Scholar

[4] Bowen A.W., On the Importance of Crystallographic Texture in the Characterization of Alpha-based Titanium Alloys, Scripta. Mater.11 (1977) 0-21.

DOI: 10.1016/0036-9748(77)90005-9

Google Scholar

[5] Gregory J.K., Brokmeier H.G., The Influence of Texture and Microstructure on Corrosion-fatigue in Ti-6Al-4V, Mater. Sci. Forum.5 (1994) 157-162.

DOI: 10.4028/www.scientific.net/msf.157-162.1971

Google Scholar

[6] Bache M.R., Evans W.J., Suddell B., HerrouinF.R.M., The Effects of Texture in Titanium Alloys for Engineering Components under Fatigue, Int. J. Fatigue23 (2001) 153-159.

DOI: 10.1016/s0142-1123(01)00124-4

Google Scholar

[7] Whittaker M.T., Considerations in Fatigue Lifing of Stress Concentrations in Textured Titanium 6-4, Int. J. Fatigue 33 (2011) 1384-1391.

DOI: 10.1016/j.ijfatigue.2011.05.001

Google Scholar

[8] Uta E., Gey N., Bocher P., Humbert M., Gilgert J.,Texture Heterogeneities in αp/αs Titanium Forging Analysed by EBSD-Relation to Fatigue Crack Propagation, J. Microscopy 233 (2009) 451-459.

DOI: 10.1111/j.1365-2818.2009.03141.x

Google Scholar

[9] Bantounas I., Dye D., Lindley T.C., The Role of Microtexture on the Faceted Fracture Morphology in Ti–6Al–4V Subjected to High-cycle fatigue, Acta. Mater.58 (2010) 3908-3918.

DOI: 10.1016/j.actamat.2010.03.036

Google Scholar

[10] Bantounas I., Lindley T.C., Rugg D., Dye D., Effect of Microtexture on Fatigue Cracking in Ti–6Al–4V, Acta. Mater.55 (2007) 5655-5665.

DOI: 10.1016/j.actamat.2007.06.034

Google Scholar

[11] Bridier F., Villechaise P., Mendez J., Slip and Fatigue Crack Formation Processes in an α/β Titanium Alloy in Relation to Crystallographic Texture on Different Scales, Acta. Mater.56 (2008) 3951-3962.

DOI: 10.1016/j.actamat.2008.04.036

Google Scholar

[12] Bridier F., Villechaise P., Mendez J., Analysis of the Different Slip Systems Activated by Tension in a α/β Titanium Alloy in Relation with Local Crystallographic Orientation, Acta. Mater.53 (2005)555-567.

DOI: 10.1016/j.actamat.2004.09.040

Google Scholar

[13] Pilchak A.L., Szczepanski C.J., Shaffer J.A., Salem A.A., Semiatin S.L., Characterization of Microstructure, Texture, and Microtexture in Near-alpha Titanium Mill Products, Metall. Mater. Trans. A44 (2013) 4881-4890.

DOI: 10.1007/s11661-013-1804-x

Google Scholar

[14] Jha S.K., Szczepanski C.J., Golden P.J. PorterIII W.J., John R., Characterization of Fatigue Crack-initiation Facets in Relation to Lifetime Variability in Ti–6Al–4V, Int. J. Fatigue42 (2012) 248-257.

DOI: 10.1016/j.ijfatigue.2011.11.017

Google Scholar

[15] Wu R., Study on the Texture Evolution and Anisotropy of TC1 titanium Alloy, Ph.D. Thesis,Shenyang Aerospace University, (2011).

Google Scholar

[16] Boehlert C.J., Cowen C.J., Tamirisakandala S., McEldowney D.J., Miracle D.B., In Situ Scanning Electron Microscopy Observations of Tensile Deformation in a Boron-modified Ti–6Al–4V alloy, Scripta. Mater.55 (2006) 465-468.

DOI: 10.1016/j.scriptamat.2006.05.008

Google Scholar

[17] Gao K., Chen Q., Chu W., Hsiao C.,In-situ Observation of Initiation and Propagation of Cleavage Microcracks in TiAl, J. Mater. Sci. Technol. 1 (1995) 11-14.

Google Scholar

[18] Yin D.D., Elevated-temperature Deformation, Strengthening and Fracture Mechanisms in Cast Creep-resistant mg-11y-5gd-2zn-0.5zr(wt.%) magnesium alloy, Ph.D. Thesis, Shanghai Jiao Tong University, (2013).

Google Scholar

[19] Zheng X., Zhang H., Experimental Determination of Deformation Induced Lattice Rotation by EBSD Technique for Slip System Analysis, J. Mater. Sci. Technol. 1 (2017) 90-98.

DOI: 10.1016/j.jmst.2016.01.010

Google Scholar

[20] Li H., Boehlert C.J., Bieler T.R., Crimp M.A., Analysis of the Deformation Behavior in Tension and Tension-creep of Ti-3Al-2.5V at 296K and 728K (23°C and 455°C) using In Situ SEM Experiments, Metall. Mater. Trans. A, 45 (2014) 6053-6066.

DOI: 10.1007/s11661-014-2576-7

Google Scholar

[21] He D., Quantitative Research on Micro-plastic Deformation Mechanism and Microstructure Evolution of Polycrystal-dual Phase Titanium Alloy, Ph.D. Thesis, Harbin Institute of Technology, (2012).

Google Scholar

[22] Wang H., Boehlert C.J., Wang Q.D., Yin D.D., Ding W.J., In-situ Analysis of the Slip Activity During Tensile Deformation of Cast and Extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250°C, Mater.Charact.,116 (2016) 8-17.

DOI: 10.1016/j.matchar.2016.04.001

Google Scholar

[23] Li H., Analysis of the Deformation Behavior of the Hexagonal Close-packed Alpha Phase in Titanium and Titanium Alloys, Ph.D. Thesis, Michigan State University, (2013).

Google Scholar

[24] Glavicic M.G, Salem A.A, Semiatin S.L., X-ray Line-broadening Analysis of Deformation Mechanisms DuringRolling of Commercial-purity Titanium, Acta.Mater.,52 (2004) 647-655.

DOI: 10.1016/j.actamat.2003.10.025

Google Scholar

[25] Liu Y X , Chen W , Li Z Q , et al. The HCF behavior and life variability of a Ti-6Al-4V alloy with transverse texture[J]. Int. J. Fatigue, 97(2017)79-87.

DOI: 10.1016/j.ijfatigue.2016.12.030

Google Scholar