[1]
P. Schumacher, A. L. Greer, J. Worth, P. V. Evans, M. A. Kearns, P. Fisher, and A. H. Green, New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice, Mater. Sci. Technol. 14 (1998) 394-404.
DOI: 10.1179/mst.1998.14.5.394
Google Scholar
[2]
D. H. StJohn, M. A. Easton, P. Cao, M. Bermingham and M. Qian, A Brief History of the Grain Refinement of Cast Light Alloys, Mater. Sci. Forum. 765 (2013) 123-129.
DOI: 10.4028/www.scientific.net/msf.765.123
Google Scholar
[3]
M. A. Easton and D. H. StJohn, Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature, Metall. Trans. A. 30 (1999) 1613-1623.
DOI: 10.1007/s11661-999-0098-5
Google Scholar
[4]
C. Vives and R. Ricou, Experimental study of continuous electromagnetic casting of aluminum alloys, Metall. Trans. B. 16 (1985) 377-384.
DOI: 10.1007/bf02679730
Google Scholar
[5]
J. L. Meyer, N. El-Kaddah, J. Szekely, C. Vives and R. Ricou, A comprehensive study of the induced current, the electromagnetic force field, and the velocity field in a complex electromagnetically driven flow system, Metall. Trans. B. 18 (1987) 529-538.
DOI: 10.1007/bf02654265
Google Scholar
[6]
Z. V. Getselev, Casting in an electromagnetic field, J. Met. 23(1971) 38-43.
Google Scholar
[7]
C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: Part I. Working principle and metallurgical results, Metall. Trans. B. 20 (1989) 623-629.
DOI: 10.1007/bf02655919
Google Scholar
[8]
C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: Part II. Specific practical problems and their solutions, Metall. Trans. B. 20 (1989) 631-643.
DOI: 10.1007/bf02655920
Google Scholar
[9]
B. J. Zhang, G. M. Lu and J. Z. Cui, Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys, Mater. Sci. Technol. 18 (2002) 401-403.
Google Scholar
[10]
B. J. Zhang, J. Z. Cui and G. M. Lu, Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys, Mater. Lett. 57 (2003) 1707-1711.
DOI: 10.1016/s0167-577x(02)01055-8
Google Scholar
[11]
B. J. Zhang, J. Z. Cui and G. M. Lu, Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy, Mater. Sci. Eng. A. 355 (2003) 325-330.
DOI: 10.1016/s0921-5093(03)00105-9
Google Scholar
[12]
J. Dong and J. Z. Cui, Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy, Metall. Mater. Trans. A. 35 (2004) 2487-2494.
DOI: 10.1007/s11661-006-0228-2
Google Scholar
[13]
Z. H. Zhao, J. Z. Cui, Dong J, Z. F. Wang and B. J. Zhang, Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy, J. Alloys. Compd. 396 (2005) 164-168.
DOI: 10.1016/j.jallcom.2004.12.020
Google Scholar
[14]
Y. B. Zuo, J. Z. Cui, J. Dong and F. X. Yu, Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy, Mater. Sci. Eng. A. 408 (2005) 176-181.
DOI: 10.1016/j.msea.2005.07.030
Google Scholar
[15]
X. J. Wang, H. T. Zhang, Y. B. Zuo, Q. F. Zhu and J. Z. Cui, Experimental investigation of heat transport and solidification during low frequency electromagnetic hot-top casting of 6063 aluminum alloy, Mater. Sci. Eng. A. 497 (2008) 416-420.
DOI: 10.1016/j.msea.2008.07.064
Google Scholar
[16]
X. J. Wang, Z. H. Zhao, Y. B. Zuo and J. Z. Cui, Effects of low frequency electromagnetic field on solidification of 7050 aluminium alloy during hot top casting, Mater. Sci. Tech. 25 (2009) 1207-1210.
DOI: 10.1179/174328408x382172
Google Scholar
[17]
Q. F. Zhu, Z. H. Zhao, Y. B. Zuo, X. J. Wang and J. Z. Cui, Effect of low frequency electromagnetic field on as casting structure and surface quality of horizontal direct chill casting 7075 alloy, Int. J. Cast. Met. 25 (2012) 93-99.
DOI: 10.1179/1743133611y.0000000019
Google Scholar
[18]
G. S. Wang, Z. H. Zhao, J. Z. Cui and Q. Guo, Microstructure and mechanical properties of low frequency electromagnetic casting 7075 aluminum alloy, Acta Metall. Sin.(Engl. Lett.) 25 (2) (2012) 160-168.
DOI: 10.1007/s40195-019-00992-2
Google Scholar
[19]
H. T. Zhang, H. Nagaumi and J. Z. Cui, Mater. Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: Part 1: Development of a mathematical model and comparison with experimental results, Sci. Eng. A. 448 (2007) 189-203.
DOI: 10.1016/j.msea.2006.10.062
Google Scholar
[20]
X. L. Liao, Q. J. Zhai, J. Luo, W. J. Chen and Y. Y. Gong, Refining mechanism of the electric current pulse on the solidification structure of pure aluminum, Acta. Mater. 55 (2007) 3103-3109.
DOI: 10.1016/j.actamat.2007.01.014
Google Scholar
[21]
A. Vogel and B. J. Cantor, Stability of a spherical particle growing from a stirred melt, Cryst. Growth. 37 (1977) 309-316.
DOI: 10.1016/0022-0248(77)90125-7
Google Scholar
[22]
H. Garabedian, Collision breeding of ice crystals, J. Cryst. Growth. 22 (1974) 188-192.
Google Scholar