Effects of Electromagnetic Agitation on Crystal Growth during the Pure Aluminum Slow Cooling Process

Article Preview

Abstract:

Refining grains are important to obtain sound cast billets suitable for further processing. The structure refinement of low frequency electromagnetic field (LFEF) during the aluminum alloy semi-continuous casting process has been confirmed by many researchers. In this work, effects of the electromagnetic agitation on the crystal growth were investigated during the pure aluminum slow cooling process. The results showed that the grain refinement effect by electromagnetic agitation mainly occurred at the first half period of crystal growth. With increasing of applying LFEF treated time, the fine grain occupied the whole section of ingot, and the ratio of fine grain zone to the whole section was proportional to the treated time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

398-403

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Schumacher, A. L. Greer, J. Worth, P. V. Evans, M. A. Kearns, P. Fisher, and A. H. Green, New studies of nucleation mechanisms in aluminium alloys: implications for grain refinement practice, Mater. Sci. Technol. 14 (1998) 394-404.

DOI: 10.1179/mst.1998.14.5.394

Google Scholar

[2] D. H. StJohn, M. A. Easton, P. Cao, M. Bermingham and M. Qian, A Brief History of the Grain Refinement of Cast Light Alloys, Mater. Sci. Forum. 765 (2013) 123-129.

DOI: 10.4028/www.scientific.net/msf.765.123

Google Scholar

[3] M. A. Easton and D. H. StJohn, Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature, Metall. Trans. A. 30 (1999) 1613-1623.

DOI: 10.1007/s11661-999-0098-5

Google Scholar

[4] C. Vives and R. Ricou, Experimental study of continuous electromagnetic casting of aluminum alloys, Metall. Trans. B. 16 (1985) 377-384.

DOI: 10.1007/bf02679730

Google Scholar

[5] J. L. Meyer, N. El-Kaddah, J. Szekely, C. Vives and R. Ricou, A comprehensive study of the induced current, the electromagnetic force field, and the velocity field in a complex electromagnetically driven flow system, Metall. Trans. B. 18 (1987) 529-538.

DOI: 10.1007/bf02654265

Google Scholar

[6] Z. V. Getselev, Casting in an electromagnetic field, J. Met. 23(1971) 38-43.

Google Scholar

[7] C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: Part I. Working principle and metallurgical results, Metall. Trans. B. 20 (1989) 623-629.

DOI: 10.1007/bf02655919

Google Scholar

[8] C. Vives, Electromagnetic refining of aluminum alloys by the CREM process: Part II. Specific practical problems and their solutions, Metall. Trans. B. 20 (1989) 631-643.

DOI: 10.1007/bf02655920

Google Scholar

[9] B. J. Zhang, G. M. Lu and J. Z. Cui, Effect of Electromagnetic Frequency on Microstructures of Continuous Casting Aluminum Alloys, Mater. Sci. Technol. 18 (2002) 401-403.

Google Scholar

[10] B. J. Zhang, J. Z. Cui and G. M. Lu, Effect of low-frequency magnetic field on macrosegregation of continuous casting aluminum alloys, Mater. Lett. 57 (2003) 1707-1711.

DOI: 10.1016/s0167-577x(02)01055-8

Google Scholar

[11] B. J. Zhang, J. Z. Cui and G. M. Lu, Effects of low-frequency electromagnetic field on microstructures and macrosegregation of continuous casting 7075 aluminum alloy, Mater. Sci. Eng. A. 355 (2003) 325-330.

DOI: 10.1016/s0921-5093(03)00105-9

Google Scholar

[12] J. Dong and J. Z. Cui, Effect of low-frequency electromagnetic casting on the castability, microstructure, and tensile properties of direct-chill cast Al-Zn-Mg-Cu alloy, Metall. Mater. Trans. A. 35 (2004) 2487-2494.

DOI: 10.1007/s11661-006-0228-2

Google Scholar

[13] Z. H. Zhao, J. Z. Cui, Dong J, Z. F. Wang and B. J. Zhang, Effect of low-frequency magnetic field on microstructures of horizontal direct chill casting 2024 aluminum alloy, J. Alloys. Compd. 396 (2005) 164-168.

DOI: 10.1016/j.jallcom.2004.12.020

Google Scholar

[14] Y. B. Zuo, J. Z. Cui, J. Dong and F. X. Yu, Effects of low frequency electromagnetic field on the as-cast microstructures and mechanical properties of superhigh strength aluminum alloy, Mater. Sci. Eng. A. 408 (2005) 176-181.

DOI: 10.1016/j.msea.2005.07.030

Google Scholar

[15] X. J. Wang, H. T. Zhang, Y. B. Zuo, Q. F. Zhu and J. Z. Cui, Experimental investigation of heat transport and solidification during low frequency electromagnetic hot-top casting of 6063 aluminum alloy, Mater. Sci. Eng. A. 497 (2008) 416-420.

DOI: 10.1016/j.msea.2008.07.064

Google Scholar

[16] X. J. Wang, Z. H. Zhao, Y. B. Zuo and J. Z. Cui, Effects of low frequency electromagnetic field on solidification of 7050 aluminium alloy during hot top casting, Mater. Sci. Tech. 25 (2009) 1207-1210.

DOI: 10.1179/174328408x382172

Google Scholar

[17] Q. F. Zhu, Z. H. Zhao, Y. B. Zuo, X. J. Wang and J. Z. Cui, Effect of low frequency electromagnetic field on as casting structure and surface quality of horizontal direct chill casting 7075 alloy, Int. J. Cast. Met. 25 (2012) 93-99.

DOI: 10.1179/1743133611y.0000000019

Google Scholar

[18] G. S. Wang, Z. H. Zhao, J. Z. Cui and Q. Guo, Microstructure and mechanical properties of low frequency electromagnetic casting 7075 aluminum alloy, Acta Metall. Sin.(Engl. Lett.) 25 (2) (2012) 160-168.

DOI: 10.1007/s40195-019-00992-2

Google Scholar

[19] H. T. Zhang, H. Nagaumi and J. Z. Cui, Mater. Coupled modeling of electromagnetic field, fluid flow, heat transfer and solidification during low frequency electromagnetic casting of 7XXX aluminum alloys: Part 1: Development of a mathematical model and comparison with experimental results, Sci. Eng. A. 448 (2007) 189-203.

DOI: 10.1016/j.msea.2006.10.062

Google Scholar

[20] X. L. Liao, Q. J. Zhai, J. Luo, W. J. Chen and Y. Y. Gong, Refining mechanism of the electric current pulse on the solidification structure of pure aluminum, Acta. Mater. 55 (2007) 3103-3109.

DOI: 10.1016/j.actamat.2007.01.014

Google Scholar

[21] A. Vogel and B. J. Cantor, Stability of a spherical particle growing from a stirred melt, Cryst. Growth. 37 (1977) 309-316.

DOI: 10.1016/0022-0248(77)90125-7

Google Scholar

[22] H. Garabedian, Collision breeding of ice crystals, J. Cryst. Growth. 22 (1974) 188-192.

Google Scholar