[1]
Z. Cao, Y. Bao, Z. Xia, D. Luo, A. Guo, K. Wu, Toughening mechanisms of a high-strength acicular ferrite steel heavy plate, J. International Journal of Minerals, Metallurgy, and Materials 17 (2010) 567-572.
DOI: 10.1007/s12613-010-0358-9
Google Scholar
[2]
P. E. V. S. Rodrigues P C M, Mechanical properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling, J. Materials Science and Engineering A283 (2000) 136-143.
DOI: 10.1016/s0921-5093(99)00795-9
Google Scholar
[3]
ZHAO Xian-peng, GUO Huai-bing, LIU Ji-hong, GUO Wei, Cause Analysis of Unstable Impact Property of Q550D High Strenth Steel, J. Steel Rolling 27 (2010) 18-19.
Google Scholar
[4]
C. Oberbillig, M. Huang, O. Bouaziz, K. Zhu, An approach to define the effective lath size controlling yield strength of bainite, J. Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing 527 (2010) 6614-6619.
DOI: 10.1016/j.msea.2010.06.061
Google Scholar
[5]
H. J. Du Lin-Xiu Jian-Jun Wang Hui Xie Cai-Ru Gao R D K Misra, Structure–mechanical property relationship in low carbon microalloyed steel plate processed using controlled rolling and two-stage continuous cooling, J. Materials Science & Engineering A (2013) 197-204.
DOI: 10.1016/j.msea.2013.07.071
Google Scholar
[6]
J. Hu, L. Du, H. Xie, F. Dong, R. D. K. Misra, Effect of weld peak temperature on the microstructure, hardness, and transformation kinetics of simulated heat affected zone of hot rolled ultra-low carbon high strength Ti-Mo ferritic steel, J. Materials and Design 60 (2014) 302-309.
DOI: 10.1016/j.matdes.2014.04.003
Google Scholar
[7]
Z. X. Li, C. S. Li, B. Z. Li, Y. Q. Ma, T. Li, Effects of cooling process on microstructure and hardness for 1.0C-1.5Cr bearing steel, J. Materials Science and Technology: MST: A publication of the Institute of Metals 31 (2015) 722-729.
DOI: 10.1179/1743284714y.0000000657
Google Scholar
[8]
Z. Li, C. Li, Microstructure of Hot Rolled 1.0C-1.5Cr Bearing Steel and Subsequent Spheroidization Annealing, J. Metallurgical and Materials Transactions A 47 (2016) 3607-3621.
DOI: 10.1007/s11661-016-3425-7
Google Scholar
[9]
H. F. Lan, L. X. Du, X. H. Liu, Microstructure and mechanical properties of a low carbon bainitic steel, J. Steel Research International 84 (2013) 352-361.
DOI: 10.1002/srin.201200186
Google Scholar
[10]
Y. X. Tian, B. Wang, J. L. Li, B. L. Chen, Q. Feng, Microstructure and properties of X100 high strength pipeline steel, in: vol 814, Trans Tech Publications Ltd, Chengdu, China, 2015, pp.325-332.
DOI: 10.4028/www.scientific.net/msf.814.325
Google Scholar
[11]
L. Lan, X. Kong, C. Qiu, Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles, J. Materials Characterization 105 (2015) 95-103.
DOI: 10.1016/j.matchar.2015.05.010
Google Scholar
[12]
YU Qingbo, SUN Ying, NI Hongxin, ZHANG Kaifeng, Effect of Different Bainitic Microstructures on the Mechanical Properties of Low-carbon Steel, J. Journal of Mechanical Engineering 45 (2009) 284-288.
DOI: 10.3901/jme.2009.12.284
Google Scholar
[13]
YANG Shanwu, SHANG Chengjia, WANG Xuemin, HE Xinlai, Abnormally turning of fine lath-like microstructures in low carbon microalloyed steel during mono-axis tension, J. Acta Metallrugica Sinica 39 (2003) 579-584.
Google Scholar
[14]
J. Zhang, C. Li, Effect of Final Cooling Temperature on Microstructure and Mechanical Properties of a Cr-Ni-Mo-V Bainite Steel, J. Journal of Materials Engineering and Performance 27 (2018) 4749-4759.
DOI: 10.1007/s11665-018-3288-8
Google Scholar