Effect of Tempering Temperature on Microstructure and Properties of Low Carbon High Silicon Alloy Steel Treated by Q-P-T Process

Article Preview

Abstract:

The mechanical properties and microstructure of low-carbon high-silicon alloy steel were examined under various tempering temperatures using the quenching, partitioning and tempering (Q–P–T) process. The performance changed with the variation in tempering temperature. The results show that the microstructure of low carbon high silicon alloy steel treated by Q-P-T process was mainly ferrite, martensite, carbide-free bainite and film-like retained austenite. This alloys exhibited good mechanical properties at tempering temperature of 300 °C. The product of strength and elongation were 33.7 GPa%. Specifically, the Ultimate tensile strength were 1508 MPa, the yield strength were 1048 MPa, and the elongation were 22.4%. At this temperature of 300 °C, the volume fraction of retained austenite reached 10.4%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

592-596

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Kuziak, R., R. Kawalla, and S. Waengler, Advanced high strength steels for automotive industry. Archives of Civil and Mechanical Engineering, 2008. 8(2): pp.103-117.

DOI: 10.1016/s1644-9665(12)60197-6

Google Scholar

[2] Wang, C.-y., et al., Work Hardening Behavior and Stability of Retained Austenite for Quenched and Partitioned Steels. Journal of Iron and Steel International, 2016. 23(2): pp.130-137.

DOI: 10.1016/s1006-706x(16)30024-3

Google Scholar

[3] Osamu Matsumura, et al., Effect of Retained Austenite on Formability of High Strength Sheet Steels. ISIJ international, 1992. 32(10): pp.1110-1116.

DOI: 10.2355/isijinternational.32.1110

Google Scholar

[4] Zackay V F, Parker E R, Fahr D, Busch R. ASM Trans Quart, 1967; 60: 252.

Google Scholar

[5] Webster D. ASM Trans Quart, 1968; 61: 816.

Google Scholar

[6] Zhang K, Zhang M H, Guo Z H, Chen N L, Rong Y H.Mater Sci Eng, 2011; A528: 8486.

Google Scholar

[7] J.G. Speer, D.K. Matlock, B.C. De Cooman, J.G. Schroth, Acta Mater. 51 (2003) 2611.

Google Scholar

[8] A.J. Clarke, J.G. Speer, D.K. Matlock, F.C. Rizzo, Scripta Mater. 61 (2009) 149.

Google Scholar

[9] M.J. Santofifimia, J.G. Speer, A.J. Clarke, L. Zhao, J. Sietsma, Acta Mater. 57 (2009) 4548.

Google Scholar

[10] F.G. Caballero, H.K.D.H. Bhadeshia, Curr. Opin. Solid State Mater. Sci. 8 (2004) 251–257.

Google Scholar

[11] N. Zhong, X.D. Wang, L. Wang, Y.H. Rong, Mater. Sci. Eng. A 506 (2009) 111–116.

Google Scholar

[12] X.D. Wang, W.Z. Xu, Z.H. Guo, L. Wang, Y.H. Rong, Mater. Sci. Eng. A 527 (2010) 3373–3378.

Google Scholar

[13] X.D. Wang, Z.H. Guo, Y.H. Rong, Mater. Sci. Eng. A 529 (2011) 35–40.

Google Scholar

[14] D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, J.G. Speer, Mater. Sci. Eng. A 438 (2006) 25–34.

Google Scholar

[15] B.C. De Cooman, Curr. Opin. Solid State Mater. Sci. 8 (2004) 285–303.

Google Scholar

[16] D.Y. Liu, B.Z. Bai, H.S. Fang, W.Z. Zhang, J.L. Gu, K.D. Chang, Mater. Sci. Eng. A 371 (2004) 40–44.

Google Scholar

[17] D. Edmonds, D. Matlock, J. Speer, Metall. Ital. 1 (2011) 41–49.

Google Scholar

[18] J.C. Hell, M. Dehmas, S. Allain, J.M. Prado, A. Hazotte, J.P. Chateau, ISIJ Int. 51 (2011) 1724–1732.

DOI: 10.2355/isijinternational.51.1724

Google Scholar

[19] H.P. Li, X.W. Lu, X.J. Jin, H. Dong, J. Shi, Scr. Mater. 64 (2011) 749–752.

Google Scholar

[20] H. Zhang, L. Zhang, X.L. Cheng, B.Z. Bai, Acta Mater. 58 (2010) 6173–6180.

Google Scholar