Manufactory and Properties of Poly(p-Phenylenebenzobisoxazole) Aerogels Prepared by a Simple Freeze-Drying Procedure

Article Preview

Abstract:

Aerogels based on organic high performance fibers have been attracted great attention due to its excellent thermal and mechanical properties. Here, PBO nanofiber aerogel were prepared from the super-fiber PBO through a top-down process with a sol-gel process and a simple freeze-drying process, followed by thermal cross-linking. The prepared aerogel has a small volume shrinkage, a high specific surface area of 168.9 m2 /g and a small pore diameter of 1.356 nm. Because of its 3D porous structure, it results in a low density of 6 to 30 mg/cm3 and a high porosity (98%). The aerogel retains the molecular structure of PBO at the same time, which gives it initial thermal decomposition temperature up to 500 °C and a superior fire-retardant capability. PBO aerogel possesses good compressive properties with a yield stress of 0.44MPa at 80% strain and an elasticity modulus of 1.98 MPa which is higher than SiO2 and cellulose aerogel reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

662-668

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Hüsing, U. Schubert, Angew. Chem., Int. Ed. 1998, 37, 22.

Google Scholar

[2] A. C. Pierre, G. M. Pajonk, Chem. Rev. 2002, 102, 4243.

Google Scholar

[3] C. Ziegler, A. Wolf, W. Liu, A.-K. Herrmann, N. Gaponik, A. Eychmgller, Angew. Chem., Int. Ed. 2017, 56, 13200.

DOI: 10.1002/anie.201611552

Google Scholar

[4] Kistler, S. S., Nature 1931, 127, 741.

Google Scholar

[5] M. D. Gawryla, O. van den Berg, C. Weder, D. A. Schiraldi, J. Mater. Chem. A2009, 19, 2118.

Google Scholar

[6] J. C. Williams, M. A. B. Meador, L. McCorkle, C. Mueller, N. Wilmoth, Chem. Mater. 2014, 26, 4163.

Google Scholar

[7] R. T. Olsson, M. A. S. Azizi Samir, G. Salazar-Alvarez, L. Belova, V. Ström, L. A. Berglund, O. Ikkala, J. Nogués, U. W. Gedde, Nat. Nanotechnol. 2010, 5, 584.

DOI: 10.1038/nnano.2010.155

Google Scholar

[8] N. Leventis, Acc. Chem. Res. 2007, 40, 874.

Google Scholar

[9] M. A. B. Meador, M. Agnello, L. McCorkle, S. L. Vivod, N. Wilmoth, ACS Appl. Mater. Interfaces 2016, 8, 29073.

DOI: 10.1021/acsami.6b10248

Google Scholar

[10] H. Guo, M. A. B. Meador, L. McCorkle, D. J. Quade, J. Guo, B. Hamilton, M. Cakmak, ACS Appl. Mater. Interfaces 2012, 4, 5422.

DOI: 10.1021/am301347a

Google Scholar

[11] J. C. Williams, B. N. Nguyen, L. McCorkle, D. Scheiman, J. S. Griffin, S. A. Steiner, M. A. B. Meador, ACS Appl. Mater. Interfaces 2017, 9, 1801.

DOI: 10.1021/acsami.6b13100

Google Scholar

[12] Z. Lin, Z. Zeng, X. Gui, Z. Tang, M. Zou, A. Cao, Adv. Energy Mater. 2016, 6, 1600554.

Google Scholar

[13] S. Jiang, S. Agarwal, A. Greiner, Angew. Chem., Int. Ed. 2017, 56, 15520.

Google Scholar

[14] R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc. Rev.2011, 40, 3941.

Google Scholar

[15] Chen M L, Wang D L, Yue M L. Macromolecular Materials and Engineering, 2018, 303(10), 1800229-1800237.

Google Scholar

[16] Qian Z C, Yang M, Li R, Dongdong Li. Journal of Materials Chemistry A, 2018, 6(42): 20769-20777.

Google Scholar

[17] S. Ifuku, H. Maeta, H. Izawa, M. Morimoto and H. Saimoto, RSC Adv., 2015, 5, 35307–35310.

DOI: 10.1039/c5ra04679c

Google Scholar

[18] X. Xu, J. Zhou, D. H. Nagaraju, L. Jiang, V. R. Marinov, G. Lubineau, H. N. Alshareef and M. Oh, Adv. Funct. Mater., 2015, 25, 3193–3202.

DOI: 10.1002/adfm.201500538

Google Scholar

[19] Y. Kobayashi, T. Saito and A. Isogai, Angew. Chem., Int. Ed., 2014, 53, 10394–10397.

Google Scholar

[20] L. Su, H. Wang, M. Niu, X. Fan, M. Ma, Z. Shi and S.-W. Guo, ACS Nano, 2018, 12, 3103–3111.

Google Scholar

[21] Z. Y. Wu, C. Li, H. W. Liang, J. F. Chen and S. H. Yu, Angew. Chem., Int. Ed., 2013, 52, 2925–2929.

Google Scholar