[1]
H. Jang, S. Yoo, M. Quevedo, H. Choi, Effect of processing route on mechanical and thermal properties of few-layered graphene (FLG)-reinforced copper matrix composites, Journal of Alloys and Compounds 754 (2018) 7-13.
DOI: 10.1016/j.jallcom.2018.04.272
Google Scholar
[2]
X. Gao, H. Yue, E. Guo, S. Zhang, L. Yao, X. Lin, B. Wang, E. Guan, Tribological properties of copper matrix composites reinforced with homogeneously dispersed graphene nanosheets, Journal of Materials Science & Technology 34(10) (2018) 1925-1931.
DOI: 10.1016/j.jmst.2018.02.010
Google Scholar
[3]
H. Yue, L. Yao, X. Gao, S. Zhang, E. Guo, H. Zhang, X. Lin, B. Wang, Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites, Journal of Alloys and Compounds 691 (2017) 755-762.
DOI: 10.1016/j.jallcom.2016.08.303
Google Scholar
[4]
N. V. Ponraj, S.C. Vettivel, A. Azhagurajan, X. Sahaya shajan, P.Y. Nabhiraj, T. Theivasanthi, P. Selvakumar, A.H. Lenin, Effect of milling on dispersion of graphene nanosheet reinforcement in different morphology copper powder matrix, Surfaces and Interfaces 9 (2017) 260-265.
DOI: 10.1016/j.surfin.2017.10.006
Google Scholar
[5]
C.-C. Hsieh, W.-R. Liu, Synthesis and characterization of nitrogen-doped graphene nanosheets/copper composite film for thermal dissipation, Carbon 118 (2017) 1-7.
DOI: 10.1016/j.carbon.2017.03.025
Google Scholar
[6]
N.V. Ponraj, A. Azhagurajan, S.C. Vettivel, X. Sahaya Shajan, P.Y. Nabhiraj, M. Sivapragash, Graphene nanosheet as reinforcement agent in copper matrix composite by using powder metallurgy method, Surfaces and Interfaces 6 (2017) 190-196.
DOI: 10.1016/j.surfin.2017.01.010
Google Scholar
[7]
C. He, N. Zhao, C. Shi, X. Du, J. Li, H. Li, Q.J.A.M. Cui, An Approach to Obtaining Homogeneously Dispersed Carbon Nanotubes in Al Powders for Preparing Reinforced Al‐Matrix Composites, Advanced Materials 19 (8) (2010) 1128-1132.
DOI: 10.1002/adma.200601381
Google Scholar
[8]
Y. Chen, X. Zhang, E. Liu, C. He, C. Shi, J. Li, P. Nash, N.J.S.R. Zhao, Fabrication ofin-situgrown graphene reinforced Cu matrix composites, Scientific Reports 6 (2016) 19363.
DOI: 10.1038/srep19363
Google Scholar
[9]
Z. Wang, X. Cai, C. Yang, L. Zhou, Improving strength and high electrical conductivity of multi-walled carbon nanotubes/copper composites fabricated by electrodeposition and powder metallurgy, Journal of Alloys and Compounds 735 (2018) 905-913.
DOI: 10.1016/j.jallcom.2017.11.200
Google Scholar
[10]
K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science 306.5696 (2004) 666-669.
DOI: 10.1126/science.1102896
Google Scholar
[11]
M. D. Stoller, S. Park, Y. Zhu, J. An, R.S.J.N.L. Ruoff, Graphene-based ultracapacitors, Nano Letters 8(10) (2008) 3498-3502.
DOI: 10.1021/nl802558y
Google Scholar
[12]
D. Depan, B. Girase, J.S. Shah, R.D.K.J.A.B. Misra, Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds, Acta Biomaterialia 7(9) (2011) 3432-3445.
DOI: 10.1016/j.actbio.2011.05.019
Google Scholar
[13]
H. Jaewon, Y. Taeshik, J. Sung Hwan, L. Jinsup, K. Taek-Soo, H. Soon Hyung, J.J.A.M. Seokwoo, Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process, Advanced Materials 25(46) (2013) 6724-6729.
DOI: 10.1002/adma.201302495
Google Scholar
[14]
S.C.J.M.S. Tjong, E.R. Reports, Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets, Materials Science & Engineering R Reports 74(10) (2013) 281-350.
DOI: 10.1016/j.mser.2013.08.001
Google Scholar
[15]
F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q.J.C. Huang, Effects of graphene content on the microstructure and properties of copper matrix composites, Carbon 96 (2016) 836-842.
DOI: 10.1016/j.carbon.2015.10.023
Google Scholar
[16]
D. Zhang, Z.J.J.o.A. Zhan, Compounds, Strengthening effect of graphene derivatives in copper matrix composites, Journal of Alloys & Compounds 654 (2016) 226-233.
DOI: 10.1016/j.jallcom.2015.09.013
Google Scholar
[17]
X. Zhang, C. Shi, E. Liu, F. He, L. Ma, Q. Li, J. Li, W. Bacsa, N. Zhao, C. He, Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network, Nanoscale 9(33) (2017) 11929-11938.
DOI: 10.1039/c6nr07335b
Google Scholar
[18]
M. Li, H. Che, X. Liu, S. Liang, H.J.J.o.M.S. Xie, Highly enhanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles, Journal of Materials Science 49(10) (2014) 3725-3731.
DOI: 10.1007/s10853-014-8082-x
Google Scholar
[19]
D. Zhang, Z.J.J.o.A. Zhan, Compounds, Preparation of graphene nanoplatelets-copper composites by a modified semi-powder method and their mechanical properties, Journal of Alloys & Compounds 658 (2016) 663-671.
DOI: 10.1016/j.jallcom.2015.10.252
Google Scholar
[20]
A.C.J.S.S.C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects, Solid State Communications 143(1) (2007) 47-57.
DOI: 10.1016/j.ssc.2007.03.052
Google Scholar
[21]
L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S.J.P.R. Dresselhaus, Raman spectroscopy in graphene, Physics Reports 473(5) (2009) 51-87.
DOI: 10.1016/j.physrep.2009.02.003
Google Scholar
[22]
Y. Fan, J. Wan, A.J.A.F.M. Kawasaki, Highly Conductive Few-Layer Graphene/Al2O3 Nanocomposites with Tunable Charge Carrier Type, Advanced Functional Materials 22(18) (2012) 3882-3889.
DOI: 10.1002/adfm.201200632
Google Scholar
[23]
L. Dong, C.R. Liu, G.J.J.A.M. Cheng, Single-layer graphene oxide reinforced metal matrix composites by laser sintering: Microstructure and mechanical property enhancement, Acta Materialia 80 (2014) 183-193.
DOI: 10.1016/j.actamat.2014.07.038
Google Scholar
[24]
Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, E.J.J.A.P.L. Lavernia, Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density, Applied Physics Letters 92(8) (2008) 54.
DOI: 10.1063/1.2870014
Google Scholar
[25]
Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, H. Ke, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, Y.T.J.A.M. Zhu, Simultaneously Increasing the Ductility and Strength of Ultra‐Fine‐Grained Pure Copper, Advanced Materials 18(22) (2010) 2949-2953.
DOI: 10.1002/adma.200601472
Google Scholar