[1]
Qiao GY, Chen XW, Han XL, et al. Mechanical properties of high-Nb X80 steel weld pipes for the second west-to-east gas transmission pipeline project. Advances in Materials Science and Engineering, 2017, 2017(3):1-13.
DOI: 10.1155/2017/7409873
Google Scholar
[2]
Wang X. Effect of strain-aging on line pipe steel with high strength. Welded Pipe & Tube, 2010, 401: 102-110.
Google Scholar
[3]
Li J, Su L, Lu C, et al. The evolution of microtexture of pipeline steel from strip to bare pipe to coated pipe. Procedia Engineering, 2017, 207:1844-1849.
DOI: 10.1016/j.proeng.2017.10.949
Google Scholar
[4]
Fukuda N, Yatabe H, Kawaguchi S, et al. Experimental and analytical study of cold bending process for pipelines. Journal of Offshore Mechanics and Arctic Engineering, 2003, 125: 153-157.
DOI: 10.1115/1.1554701
Google Scholar
[5]
Chen H Y, Niu J, Chi Q, et al. Strain capacity of girth weld joint cracked at near-seam zone,. International Journal of Pressure Vessels and Piping, 2016, 139: 77-85.
DOI: 10.1016/j.ijpvp.2016.03.006
Google Scholar
[6]
Ni D R, Chen D L, Wang D, et al. Tensile properties and strain-hardening behaviour of friction stir welded SiCp/AA2009 composite joints. Materials Science & Engineering A, 2014, 608(7):1-10.
DOI: 10.1016/j.msea.2014.04.060
Google Scholar
[7]
Eriksson C L, Larsson P L, Rowcliffe D J. Strain-hardening and residual stress effects in plastic zones around indentations. Materials Science & Engineering A, 2003, 340(1):193-203.
DOI: 10.1016/s0921-5093(02)00186-7
Google Scholar
[8]
Shang C J, Liu S L, et al. Effect of volume fraction of bainite on strain hardening behavior and deformation mechanism of F/B multi-phase steel. Materials Science & Engineering A, 2018, 731: 173-183.
DOI: 10.1016/j.msea.2018.06.016
Google Scholar
[9]
Afrin N, Chen D L, Cao X, et al. Strain hardening behavior of a friction stir welded magnesium alloy. Scripta Materialia, 2007, 57(11):1004-1007.
DOI: 10.1016/j.scriptamat.2007.08.001
Google Scholar
[10]
Dundu M. Evolution of stress–strain models of stainless steel in structural engineering applications. Construction & Building Materials, 2018, 165:413–423.
DOI: 10.1016/j.conbuildmat.2018.01.008
Google Scholar
[11]
Kingklang S, Uthaisangsuk V. Micromechanical modeling of anisotropic behavior of pipeline steel grade X65. Materials & Design, 2017.127, 243-260.
DOI: 10.1016/j.matdes.2017.04.087
Google Scholar
[12]
Bastola A, Wang J, Shitamoto H, et al. Investigation on the strain capacity of girth welds of X80 seamless pipes with defects. Engineering Fracture Mechanics, 2017, 180: 348-365.
DOI: 10.1016/j.engfracmech.2017.06.010
Google Scholar
[13]
Han J, Lu C, Wu B, et al. Innovative analysis of Luders band behaviour in X80 pipeline steel. Materials Science & Engineering A, 2017, 683:123-128.
DOI: 10.1016/j.msea.2016.12.008
Google Scholar
[14]
Zhou C, Wang B, Zhu J, et al. Microstructure and mechanical properties of X70 pipeline steel with high deformability. Materials for Mechanical Engineering, 2014, 38(10):32-36.
Google Scholar
[15]
Soliman M, Palkowski H. Influence of hot working parameters on microstructure evolution, tensile behavior and strain aging potential of bainitic pipeline steel. Materials & Design, 2015, 88:759-773.
DOI: 10.1016/j.matdes.2015.09.040
Google Scholar