Synthesis of Four-Armed Star-Shaped Poly(N,N- Diethylacrylamide) by Group Transfer Polymerization in the Presence of Hydrosilylane

Article Preview

Abstract:

The core-first synthesis of four-armed star-shaped poly(N,N-diethylacrylamide) with predicted molecular weights and narrow molecular weight distributions (Mw/Mn=1.17) was carried out by the Tris(pentafluorophenyl)borane (B(C6F5)3) -catalyzed group transfer polymerization (GTP) using ethyldimethylsilane (EtMe2SiH) as hydrosilylane. The optimal ratio of the precursor to the hydrosilylation agent was 1:4.2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

689-694

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mishra, M.K. and S. Kobayashi, Star and hyperbranched polymers. 1999, New York and Basel: Marcel Dekker, Inc.

Google Scholar

[2] Zhu, W., J. Ling, and Z. Shen, Synthesis and Characterization of Amphiphilic Star‐Shaped Polymers With Calix[6]arene Cores. Macromolecular Chemistry & Physics, 2006. 207(9): pp.844-849.

DOI: 10.1002/macp.200600008

Google Scholar

[3] Xiaohua, L., J. Xiaobing, and M.P. X., Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Materials, 2011. 10(5): pp.398-406.

DOI: 10.1038/nmat2999

Google Scholar

[4] Knoll, K. and N. Nießner, Styrolux+ and styroflex+ ‐ from transparent high impact polystyrene to new thermoplastic elastomers: Syntheses, applications and blends with other styrene based polymers. Macromolecular Symposia, 2015. 132(1): pp.231-243.

DOI: 10.1002/masy.19981320122

Google Scholar

[5] Hadjichristidis, N., et al., 6.03 – Polymers with Star-Related Structures : Synthesis, Properties, and Applications. Polymer Science A Comprehensive Reference, 2012: pp.29-111.

Google Scholar

[6] Schaefgen, J.R. and P.J. Flory, Synthesis of Multichain Polymers and Investigation of their Viscosities1. Journal of the American Chemical Society, 1948. 70(8): p.2709–2718.

DOI: 10.1021/ja01188a026

Google Scholar

[7] Morton, M., et al., Preparation and properties of monodisperse branched polystyrene. Journal of Polymer Science, 1962. 57(165): pp.471-482.

DOI: 10.1002/pol.1962.1205716537

Google Scholar

[8] Jr, T.A., et al., Preparation and characterization of some star-and comb-type branched polystyrenes. Journal of Polymer Science Part A General Papers, 1965. 3(12): p.4131–4151.

DOI: 10.1002/pol.1965.100031209

Google Scholar

[9] Orofino, T.A. and F. Wenger, Dilute solution properties of branched polymers. Polystyrene trifuntional star molecules. Journal of Physical Chemistry, 1963. 67(3): pp.566-575.

DOI: 10.1021/j100797a007

Google Scholar

[10] Roovers, J., et al., Regular star polymers with 64 and 128 arms. Models for polymeric micelles. Macromolecules, 1993. 26(16): pp.4324-4331.

DOI: 10.1021/ma00068a039

Google Scholar

[11] Roovers, J., P. Toporowski, and J. Martin, Synthesis and characterization of multiarm star polybutadienes. Macromolecules, 1989. 22(4): pp.1897-1903.

DOI: 10.1021/ma00194a064

Google Scholar

[12] Bauer, B.J., et al., Chain dimensions in dilute polymer solutions: a light-scattering and viscometric study of multiarmed polyisoprene stars in good and .THETA. solvents. Macromolecules, 1989. 22(5): pp.409-23.

DOI: 10.1021/ma00195a058

Google Scholar

[13] Pitsikalis, M., et al., Linking reactions of living polymers with bromomethylbenzene derivatives: Synthesis and characterization of star homopolymers and graft copolymers with polyelectrolyte branches. Journal of Polymer Science Part A Polymer Chemistry, 2015. 37(23): pp.4337-4350.

DOI: 10.1002/(sici)1099-0518(19991201)37:23<4337::aid-pola10>3.0.co;2-8

Google Scholar

[14] Ito, S., et al., Successive Synthesis of Miktoarm Star Polymers Having up to Seven Arms by a New Iterative Methodology Based on Living Anionic Polymerization Using a Trifunctional Lithium Reagent. Macromolecules, 2013. 46(3): pp.819-827.

DOI: 10.1021/ma3024975

Google Scholar

[15] Hadjichristidis, N., et al., Macromolecular architectures by living and controlled/living polymerizations. Progress in Polymer Science, 2006. 31(12): pp.1068-1132.

DOI: 10.1016/j.progpolymsci.2006.07.002

Google Scholar

[16] Veregin, R.P.N., et al., Free radical polymerizations for narrow polydispersity resins: electron spin resonance studies of the kinetics and mechanism. Macromolecules, 1993. 26(20): pp.5316-5320.

DOI: 10.1021/ma00072a007

Google Scholar

[17] Saikia, P.J., A. Goswami, and S.D. Baruah, Transition metal‐catalyzed atom transfer radical polymerization of stearyl methacrylate in the presence of carbon tetrabromide and a conventional radical initiator. Journal of Applied Polymer Science, 2002. 86(2): p.386–394.

DOI: 10.1002/app.10972

Google Scholar

[18] Chiefari, J., et al., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process. Macromolecules, 1998. 31(16): pp.5559-5562.

DOI: 10.1021/ma9804951

Google Scholar