[1]
Mishra, M.K. and S. Kobayashi, Star and hyperbranched polymers. 1999, New York and Basel: Marcel Dekker, Inc.
Google Scholar
[2]
Zhu, W., J. Ling, and Z. Shen, Synthesis and Characterization of Amphiphilic Star‐Shaped Polymers With Calix[6]arene Cores. Macromolecular Chemistry & Physics, 2006. 207(9): pp.844-849.
DOI: 10.1002/macp.200600008
Google Scholar
[3]
Xiaohua, L., J. Xiaobing, and M.P. X., Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nature Materials, 2011. 10(5): pp.398-406.
DOI: 10.1038/nmat2999
Google Scholar
[4]
Knoll, K. and N. Nießner, Styrolux+ and styroflex+ ‐ from transparent high impact polystyrene to new thermoplastic elastomers: Syntheses, applications and blends with other styrene based polymers. Macromolecular Symposia, 2015. 132(1): pp.231-243.
DOI: 10.1002/masy.19981320122
Google Scholar
[5]
Hadjichristidis, N., et al., 6.03 – Polymers with Star-Related Structures : Synthesis, Properties, and Applications. Polymer Science A Comprehensive Reference, 2012: pp.29-111.
Google Scholar
[6]
Schaefgen, J.R. and P.J. Flory, Synthesis of Multichain Polymers and Investigation of their Viscosities1. Journal of the American Chemical Society, 1948. 70(8): p.2709–2718.
DOI: 10.1021/ja01188a026
Google Scholar
[7]
Morton, M., et al., Preparation and properties of monodisperse branched polystyrene. Journal of Polymer Science, 1962. 57(165): pp.471-482.
DOI: 10.1002/pol.1962.1205716537
Google Scholar
[8]
Jr, T.A., et al., Preparation and characterization of some star-and comb-type branched polystyrenes. Journal of Polymer Science Part A General Papers, 1965. 3(12): p.4131–4151.
DOI: 10.1002/pol.1965.100031209
Google Scholar
[9]
Orofino, T.A. and F. Wenger, Dilute solution properties of branched polymers. Polystyrene trifuntional star molecules. Journal of Physical Chemistry, 1963. 67(3): pp.566-575.
DOI: 10.1021/j100797a007
Google Scholar
[10]
Roovers, J., et al., Regular star polymers with 64 and 128 arms. Models for polymeric micelles. Macromolecules, 1993. 26(16): pp.4324-4331.
DOI: 10.1021/ma00068a039
Google Scholar
[11]
Roovers, J., P. Toporowski, and J. Martin, Synthesis and characterization of multiarm star polybutadienes. Macromolecules, 1989. 22(4): pp.1897-1903.
DOI: 10.1021/ma00194a064
Google Scholar
[12]
Bauer, B.J., et al., Chain dimensions in dilute polymer solutions: a light-scattering and viscometric study of multiarmed polyisoprene stars in good and .THETA. solvents. Macromolecules, 1989. 22(5): pp.409-23.
DOI: 10.1021/ma00195a058
Google Scholar
[13]
Pitsikalis, M., et al., Linking reactions of living polymers with bromomethylbenzene derivatives: Synthesis and characterization of star homopolymers and graft copolymers with polyelectrolyte branches. Journal of Polymer Science Part A Polymer Chemistry, 2015. 37(23): pp.4337-4350.
DOI: 10.1002/(sici)1099-0518(19991201)37:23<4337::aid-pola10>3.0.co;2-8
Google Scholar
[14]
Ito, S., et al., Successive Synthesis of Miktoarm Star Polymers Having up to Seven Arms by a New Iterative Methodology Based on Living Anionic Polymerization Using a Trifunctional Lithium Reagent. Macromolecules, 2013. 46(3): pp.819-827.
DOI: 10.1021/ma3024975
Google Scholar
[15]
Hadjichristidis, N., et al., Macromolecular architectures by living and controlled/living polymerizations. Progress in Polymer Science, 2006. 31(12): pp.1068-1132.
DOI: 10.1016/j.progpolymsci.2006.07.002
Google Scholar
[16]
Veregin, R.P.N., et al., Free radical polymerizations for narrow polydispersity resins: electron spin resonance studies of the kinetics and mechanism. Macromolecules, 1993. 26(20): pp.5316-5320.
DOI: 10.1021/ma00072a007
Google Scholar
[17]
Saikia, P.J., A. Goswami, and S.D. Baruah, Transition metal‐catalyzed atom transfer radical polymerization of stearyl methacrylate in the presence of carbon tetrabromide and a conventional radical initiator. Journal of Applied Polymer Science, 2002. 86(2): p.386–394.
DOI: 10.1002/app.10972
Google Scholar
[18]
Chiefari, J., et al., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998. 31(16): pp.5559-5562.
DOI: 10.1021/ma9804951
Google Scholar