[1]
P.L. Stiles, J.A. Dieringer, N.C. Shah, R.P. Van Duyne, Surface-enhanced Raman spectroscopy, Annual Rev. Anal. Chem. 1 (2008) 601–626.
DOI: 10.1146/annurev.anchem.1.031207.112814
Google Scholar
[2]
P.G. Etchegoin, E.C. Le Ru, Resolving single molecules in surface-enhanced Raman scattering within the inhomogeneous broadening of Raman peaks, Anal. Chem. 82 (2010) 2888–2892.
DOI: 10.1021/ac9028888
Google Scholar
[3]
E. Tan, Fabrication of silver nanoparticles decorated anodic aluminum oxide as the SERS substrate for the detection of pesticide thiram, Optoelectron. Lett. 11 (2015) 241–243.
DOI: 10.1007/s11801-015-5063-5
Google Scholar
[4]
Q.H. Tran, V.Q. Nguyen, A.-T. Le, Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives, Adv. Nat. Sci: Nanosci. Nanotechnol. 9 (2018) 049501.
DOI: 10.1088/2043-6254/aad12b
Google Scholar
[5]
M. Erol, Y. Han, S.K. Stanley, C.M. Stafford, H. Du, S. Sukhishvili, SERS not to be taken for granted in the presence of oxygen, J. Am. Chem. Soc. 131 (2009) 7480–7481.
DOI: 10.1021/ja807458x
Google Scholar
[6]
P.-G. Yin, Y. Chen, L. Jiang, T.-T. You, X.-Y. Lu, L. Guo, S. Yang, Controlled dispersion of Silver nanoparticles into the bulk of thermosensitive polymer microspheres: Tunable plasmonic coupling by temperature detected by surface enhanced Raman scattering, Macromol. Rapid Commun. 32 (2011) 1000–1006.
DOI: 10.1002/marc.201100143
Google Scholar
[7]
S. Chen, X. Liu, J. Zhou, L. Zha, Fabrication and SERS application of the thermoresponsive nanofibers with monodisperse Au@Ag bimetallic nanorods loaded shells, J. Appl. Polym. Sci. 134 (2017) 45375.
DOI: 10.1002/app.45375
Google Scholar
[8]
B. Baruah, In situ and facile synthesis of silver nanoparticles on baby wipes and their applications in catalysis and SERS, RSC Adv. 6 (2016) 5016–5023.
DOI: 10.1039/c5ra20059h
Google Scholar
[9]
W. Jeong, J. Kim, S. Kim, S. Lee, G. Mensing, David.J. Beebe, Hydrodynamic microfabrication via on the fly, photopolymerization of microscale fibers and tubes, Lab Chip. 4 (2004) 576–580.
DOI: 10.1039/b411249k
Google Scholar
[10]
Y. Cheng, F. Zheng, J. Lu, L. Shang, Z. Xie, Y. Zhao, Y. Chen, Z. Gu, Bioinspired multicompartmental microfibers from microfluidics, Adv. Mater. 26 (2014) 5184–5190.
DOI: 10.1002/adma.201400798
Google Scholar
[11]
M. Darroudi, M.B. Ahmad, K. Shameli, A.H. Abdullah, N.A. Ibrahim, Synthesis and characterization of UV-irradiated silver/montmorillonite nanocomposites, Solid State Sci. 11 (2009) 1621–1624.
DOI: 10.1016/j.solidstatesciences.2009.06.016
Google Scholar
[12]
J. He, T. Kunitake, A. Nakao, Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers, Chem. Mater. 15 (2003) 4401–4406.
DOI: 10.1021/cm034720r
Google Scholar
[13]
X.-Y. Zhang, D. Han, Z. Pang, Y. Sun, Y. Wang, Y. Zhang, J. Yang, L. Chen, Charge transfer in an ordered Ag/Cu2S/4-MBA system based on surface-enhanced Raman scattering, J. Phys. Chem. C. 122 (2018) 5599–5605.
DOI: 10.1021/acs.jpcc.8b00701
Google Scholar
[14]
L. Chen, F. Zhang, X.-Y. Deng, X. Xue, L. Wang, Y. Sun, J.-D. Feng, Y. Zhang, Y. Wang, Y.M. Jung, SERS study of surface plasmon resonance induced carrier movement in Au@Cu2O core-shell nanoparticles, Spectrochim. Acta A. 189 (2018) 608–612.
DOI: 10.1016/j.saa.2017.08.065
Google Scholar
[15]
S. Yan, F. Chu, H. Zhang, Y. Yuan, Y. Huang, A. Liu, S. Wang, W. Li, S. Li, W. Wen, Rapid, one-step preparation of SERS substrate in microfluidic channel for detection of molecules and heavy metal ions, Spectrochim. Acta A. 220 (2019) 117113.
DOI: 10.1016/j.saa.2019.05.018
Google Scholar
[16]
X. Lin, S. Lin, Y. Liu, H. Zhao, B. Liu, L. Wang, Lab‐on‐paper surface‐enhanced Raman spectroscopy platform based on self‐assembled Au@Ag nanocube monolayer for on‐site detection of thiram in soil, J. Raman Spectrosc. 50 (2019) 916-925.
DOI: 10.1002/jrs.5595
Google Scholar
[17]
K. Wang, D.-W. Sun, H. Pu, Q. Wei, Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications, Talanta. 195 (2019) 506–515.
DOI: 10.1016/j.talanta.2018.11.057
Google Scholar