[1]
Zuo Y, Cui J, Dong J, et al. Effect of low frequency electromagnetic field on the constituents of a new super high strength aluminum alloy, J. Alloys Compd. 402 (2005) 149-155.
DOI: 10.1016/j.jallcom.2005.04.135
Google Scholar
[2]
Song F X, Zhang X M, Liu S D, et al. Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time, T. Nonferr. Metal. Soc. 24 (2014) 2258-2265.
DOI: 10.1016/s1003-6326(14)63342-2
Google Scholar
[3]
Gao M, Feng C R, Wei R P. An analytical electron microscopy study of constituent particles in commercial 7075-T6 and 2024-T3 alloys, Metall. Mater. Trans. A. 29 (1998) 1145-1151.
DOI: 10.1007/s11661-998-0240-9
Google Scholar
[4]
Nur Ismarrubie Z, Loh, K.W, Yussof H. Effect of Heat Treatment on Mechanical Properties and Susceptibility to Stress Corrosion Cracking of Aluminium Alloy, Adv. Mater. Res. 845 (2014) 178-182.
DOI: 10.4028/www.scientific.net/amr.845.178
Google Scholar
[5]
Abolfazl Azarniya, Ali Karimi Taheri, Kourosh Karimi Taheri, Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloys Compd. 781 (2019) 945-983.
DOI: 10.1016/j.jallcom.2018.11.286
Google Scholar
[6]
Feng C, Liu Z Y, Ning A L, et al. Retrogression and re-aging treatment of Al-9.99%Zn-1.72%Cu-2.5%Mg-0.13%Zr aluminum alloy, T. Nonferr. Metal. Soc. 16 (2006) 1163-1170.
DOI: 10.1016/s1003-6326(06)60395-6
Google Scholar
[7]
Angappan M, Sampath V, Ashok B, et al. Retrogression and re-aging treatment on short transverse tensile properties of 7010 aluminium alloy extrusions, Mater. Design. 32 (2011) 4050-4053.
DOI: 10.1016/j.matdes.2011.03.034
Google Scholar
[8]
Ou B L, Yang J G, Wei M Y. Effect of homogenization and ageing treatment on mechanical properties and stress-corrosion cracking of 7050 alloys, Metall. Mater. Trans. A. 38 (2007) 1760-1773.
DOI: 10.1007/s11661-007-9200-z
Google Scholar
[9]
Oliveira A F, Barros M C D, Cardoso K R, et al. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys, Mater. Sci. Eng. A. 379 (2004) 321-326.
DOI: 10.1016/j.msea.2004.02.052
Google Scholar
[10]
Lin J C, Liao H L, Jehng W D, et al. Effect of heat treatments on the tensile strength and SCC-resistance of AA7050 in an alkaline saline solution, Corros. Sci. 48 (2006) 3139-3156.
DOI: 10.1016/j.corsci.2005.11.009
Google Scholar
[11]
Oliveira A F, Barros M C D, Cardoso K R, et al. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys, Mater. Sci. Eng. A. 379 (2004) 321-326.
DOI: 10.1016/j.msea.2004.02.052
Google Scholar
[12]
Marlaud T, Deschamps A, Bley F, et al. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy, Acta. Mater. 58 (2010) 4814-4826.
DOI: 10.1016/j.actamat.2010.05.017
Google Scholar
[13]
Li J F, Zheng Z Q, Li S C, Chen W J, Ren W D, Zhao X S. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys, Corros. Sci. 49 (2007) 2436-2449.
DOI: 10.1016/j.corsci.2006.12.002
Google Scholar
[14]
Danh N C, Rajan K, Wallace W. TEM study of microstructure changes during retrogression and re-ageing in 7075 aluminium, Metall. Trans. A. 14 (1983) 1843-1850.
DOI: 10.1007/bf02645554
Google Scholar