[1]
Hu, P., et al., High-performance ZrB 2 -SiC-C f composite prepared by low-temperature hot pressing using nanosized ZrB 2 powder. Journal of the European Ceramic Society, 2017. 37(6): 2317-2324.
DOI: 10.1016/j.jeurceramsoc.2017.02.008
Google Scholar
[2]
Hu, P., Z. Wang, and X. Sun, Effect of surface oxidation on thermal shock resistance of ZrB2–SiC–G composite. International Journal of Refractory Metals and Hard Materials, 2010. 28(2): 280-285.
DOI: 10.1016/j.ijrmhm.2009.10.013
Google Scholar
[3]
Luo, L., et al., Carbon fiber reinforced silicon carbide composite-based sharp leading edges in high enthalpy plasma flows. Composites Part B: Engineering, 2018. 135: 35-42.
DOI: 10.1016/j.compositesb.2017.09.060
Google Scholar
[4]
Zhang, S.C., G.E. Hilmas, and W.G. Fahrenholtz, Improved Oxidation Resistance of Zirconium Diboride by Tungsten Carbide Additions. Journal of the American Ceramic Society, 2008. 91(11): 3530-3535.
DOI: 10.1111/j.1551-2916.2008.02713.x
Google Scholar
[5]
Liang, J., et al., Influence of Oxidation Healing for Cracks on the Strength of Hot-Pressed ZrB2-SiC-AlN Ceramics. International Journal of Applied Ceramic Technology, 2012. 9(2): 441-446.
DOI: 10.1111/j.1744-7402.2011.02660.x
Google Scholar
[6]
Li, G., et al., Ablation resistance of ZrB2–SiC–AlN ceramic composites. Journal of Alloys and Compounds, 2009. 479(1-2): 299-302.
DOI: 10.1016/j.jallcom.2008.12.036
Google Scholar
[7]
Guo, S., K. Naito, and Y. Kagawa, Mechanical and physical behaviors of short pitch-based carbon fiber-reinforced HfB2–SiC matrix composites. Ceramics International, 2013. 39(2): 1567-1574.
DOI: 10.1016/j.ceramint.2012.07.108
Google Scholar
[8]
Rezaie, A., W.G. Fahrenholtz, and G.E. Hilmas, The effect of a graphite addition on oxidation of ZrB2–SiC in air at 1500°C. Journal of the European Ceramic Society, 2013. 33(2): 413-421.
DOI: 10.1016/j.jeurceramsoc.2012.09.016
Google Scholar
[9]
Krishnarao, R.V., et al., Pressureless sintering of (ZrB2–SiC–B4C) composites with (Y2O3+Al2O3) additions. International Journal of Refractory Metals and Hard Materials, 2015. 52: 55-65.
DOI: 10.1016/j.ijrmhm.2015.05.013
Google Scholar
[10]
Eakins, E., D.D. Jayaseelan, and W.E. Lee, Toward Oxidation-Resistant ZrB2-SiC Ultra High Temperature Ceramics. Metallurgical and Materials Transactions A, 2010. 42(4): 878-887.
DOI: 10.1007/s11661-010-0540-8
Google Scholar
[11]
Ghelich, R., R. Mehdinavaz Aghdam, and M.R. Jahannama, Elevated temperature resistance of SiC-carbon/phenolic nanocomposites reinforced with zirconium diboride nanofibers. Journal of Composite Materials, 2017. 52(9): 1239-1251.
DOI: 10.1177/0021998317723447
Google Scholar
[12]
Talmy, I.G., J.A. Zaykoski, and M.M. Opeka, High-Temperature Chemistry and Oxidation of ZrB2Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2. Journal of the American Ceramic Society, 2008. 91(7): 2250-2257.
DOI: 10.1111/j.1551-2916.2008.02420.x
Google Scholar
[13]
Wang, D., et al., Preparation and ablation properties of ZrB2–SiC protective laminae for carbon/carbon composites. Ceramics International, 2014. 40(9): 14215-14222.
DOI: 10.1016/j.ceramint.2014.06.010
Google Scholar
[14]
Jin, H., et al., A novel method to evaluate the thermal shock behavior of ZrB2-SiC-graphite composites under alternating complex thermal stress environments. Ceramics International, 2016. 42(14): 16354-16358.
DOI: 10.1016/j.ceramint.2016.06.209
Google Scholar
[15]
Yan, C., et al., Effect of PyC interphase thickness on mechanical and ablation properties of 3D C f /ZrC–SiC composite. Ceramics International, 2016. 42(11): 12756-12762.
DOI: 10.1016/j.ceramint.2016.04.187
Google Scholar
[16]
Paul, A., et al., UHTC–carbon fibre composites: Preparation, oxyacetylene torch testing and characterisation. Journal of the European Ceramic Society, 2013. 33(2): 423-432.
DOI: 10.1016/j.jeurceramsoc.2012.08.018
Google Scholar
[17]
Yang, F., et al., Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites. Journal of Alloys and Compounds, 2009. 472(1-2): 395-399.
DOI: 10.1016/j.jallcom.2008.04.092
Google Scholar
[18]
Sciti, D., et al., Design, fabrication and high velocity oxy-fuel torch tests of a C f -ZrB 2 - fiber nozzle to evaluate its potential in rocket motors. Materials & Design, 2016. 109: 709-717.
DOI: 10.1016/j.matdes.2016.07.090
Google Scholar
[19]
Silvestroni, L., et al., Method to improve the oxidation resistance of ZrB 2 -based ceramics for reusable space systems. Journal of the European Ceramic Society, 2018. 38(6): 2467-2476.
DOI: 10.1016/j.jeurceramsoc.2018.01.025
Google Scholar
[20]
Inoue, R., Y. Arai, and Y. Kubota, Oxidation behaviors of ZrB 2 –SiC binary composites above 2000 °C. Ceramics International, 2017. 43(11): 8081-8088.
DOI: 10.1016/j.ceramint.2017.03.129
Google Scholar
[21]
Wu, W.-W., et al., Synthesis and microstructural features of ZrB2–SiC-based composites by reactive spark plasma sintering and reactive hot pressing. Scripta Materialia, 2007. 57(4): 317-320.
DOI: 10.1016/j.scriptamat.2007.04.025
Google Scholar
[22]
Das, J., et al., Microstructure, mechanical properties and oxidation behavior of short carbon fiber reinforced ZrB2-20v/oSiC-2v/oB4C composite. Materials Science and Engineering: A, 2018. 719: 206-226.
DOI: 10.1016/j.msea.2018.01.124
Google Scholar
[23]
Ahmadi, Z., et al., Sintering behavior of ZrB2–SiC composites doped with Si3N4: A fractographical approach. Ceramics International, 2017. 43(13): 9699-9708.
DOI: 10.1016/j.ceramint.2017.04.144
Google Scholar
[24]
Pogozhev, Y.S., et al., The kinetics and mechanism of combusted Zr–B–Si mixtures and the structural features of ceramics based on zirconium boride and silicide. Ceramics International, 2016. 42(15): 16758-16765.
DOI: 10.1016/j.ceramint.2016.07.157
Google Scholar
[25]
Zhu, Y., et al., Fabrication of Cf/ZrC composites by infiltrating Cf/C performs with Zr–Cu alloys. Materials Letters, 2013. 108: 204-207.
DOI: 10.1016/j.matlet.2013.06.111
Google Scholar
[26]
Vinci, A., et al., Oxidation behaviour of a continuous carbon fibre reinforced ZrB 2 –SiC composite. Corrosion Science, 2017. 123: 129-138.
DOI: 10.1016/j.corsci.2017.04.012
Google Scholar
[27]
Sivakumar, R., et al., Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites. Scripta Materialia, 2007. 56(4): 265-268.
DOI: 10.1016/j.scriptamat.2006.10.025
Google Scholar
[28]
Zhao, X., et al., Improved ablation resistance of C/SiC-ZrB2 composites via polymer precursor impregnation and pyrolysis. Ceramics International, 2017. 43(15): 12480-12489.
DOI: 10.1016/j.ceramint.2017.06.118
Google Scholar
[29]
D.P.H. Hasselman, L.F.J., Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance. Journal of Composite Materials, 1987. 21.
DOI: 10.1177/002199838702100602
Google Scholar
[30]
Jiajun, W. and Y. Xiao-Su, Effects of interfacial thermal barrier resistance and particle shape and size on the thermal conductivity of AlN/PI composites. Composites Science and Technology, 2004. 64(10-11): 1623-1628.
DOI: 10.1016/j.compscitech.2003.11.007
Google Scholar
[31]
Chen, X., et al., Interphase degradation of three-dimensional Cf/SiC-ZrC-ZrB2 composites fabricated via reactive melt infiltration. Journal of the American Ceramic Society, 2017. 100(10): 4816-4826.
DOI: 10.1111/jace.14983
Google Scholar
[32]
Krishnarao, R.V., et al., Synthesis of ZrB2–SiC composite powder in air furnace. Ceramics International, 2014. 40(10): 15647-15653.
DOI: 10.1016/j.ceramint.2014.07.085
Google Scholar