[1]
N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents, Chem. Soc. Rev. 41 (2012) 2575-2589.
DOI: 10.1039/c1cs15248c
Google Scholar
[2]
Z. Shen, A. Wu, X. Chen, Iron oxide nanoparticle based contrast agents for magnetic resonance imaging, Mol. Pharmaceutics 14 (2017) 1352-1364.
DOI: 10.1021/acs.molpharmaceut.6b00839
Google Scholar
[3]
K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotechnol. Adv. 33 (2015) 1162-1176.
DOI: 10.1016/j.biotechadv.2015.02.003
Google Scholar
[4]
P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ. 424 (2012) 1-10.
DOI: 10.1016/j.scitotenv.2012.02.023
Google Scholar
[5]
A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, C. Wilhelm, Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment, ACS Nano 10 (2016) 2436-2446.
DOI: 10.1021/acsnano.5b07249
Google Scholar
[6]
L.H. Shen, J.F. Bao, D. Wang, Y.X. Wang, Z.W. Chen, L. Ren, X. Zhou, X.B. Ke, M. Chen, A.Q. Yang, One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bioapplication, Nanoscale 5 (2013) 2133-2141.
DOI: 10.1039/c2nr33840h
Google Scholar
[7]
H.C. Roth, S.P. Schwaminger, M. Schindler, F.E. Wagner, S. Berensmeier, Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: a model based study, J. Magn. Magn. Mater. 377 (2015) 81-89.
DOI: 10.1016/j.jmmm.2014.10.074
Google Scholar
[8]
S. Belaïd, S. Laurent, M. Vermeersch, L.V. Elst, D. Perez-Morga, R.N. Muller, A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition, Nanotechnology 24 (2013) 055705.
DOI: 10.1088/0957-4484/24/5/055705
Google Scholar
[9]
K.S.M. Salih, P. Mamone, G. Dörr, T.O. Bauer, A. Brodyanski, C. Wagner, M. Kopnarski, R.N. Klupp Taylor, S. Demeshko, F. Meyer, V. Schünemann, S. Ernst, L.J. Gooẞen, W.R. Thiel, Facile synthesis of monodisperse maghemite and ferrite nanocrystals from metal powder and octanoic acid, Chem. Mater. 25 (2013) 1430-1435.
DOI: 10.1021/cm303344z
Google Scholar
[10]
O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties, Superlattice. Microst. 52 (2012) 793-799.
DOI: 10.1016/j.spmi.2012.07.009
Google Scholar
[11]
H. Cui, Y. Liu, W. Ren, Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles, Adv. Powder Technol. 24 (2013) 93-97.
DOI: 10.1016/j.apt.2012.03.001
Google Scholar
[12]
B.K. Sodipo, A.A. Aziz, Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica, J. Magn. Magn. Mater. 416 (2016) 275-291.
DOI: 10.1016/j.jmmm.2016.05.019
Google Scholar
[13]
C. Song, W. Sun, Y. Xiao, X. Shi, Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications, Drug. Discov. Today 24 (2019) 835-844.
DOI: 10.1016/j.drudis.2019.01.001
Google Scholar
[14]
C.C. Koch, Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostruct. Mater. 9 (1997) 13-22.
Google Scholar
[15]
C.F. Burmeister, A. Kwade, Process engineering with planetary ball mills, Chem. Soc. Rev. 42 (2013) 7660-7667.
DOI: 10.1039/c3cs35455e
Google Scholar
[16]
H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering, Acta Mater. 61 (2013) 2769-2782.
DOI: 10.1016/j.actamat.2012.09.036
Google Scholar
[17]
N. Kumar, K. Biswas, R.K. Gupta, Green synthesis of Ag nanoparticles in large quantity by cryomilling, RSC Adv. 6 (2016) 111380-111388.
DOI: 10.1039/c6ra23120a
Google Scholar
[18]
Z. Khodsiani, H. Mansuri, T. Mirian, The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina, Powder Technol. 245 (2013) 7-12.
DOI: 10.1016/j.powtec.2013.04.010
Google Scholar
[19]
G.F. Goya, Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling, Solid State Commun. 130 (2004) 783-787.
DOI: 10.1016/j.ssc.2004.04.012
Google Scholar
[20]
R. Janot, D. Guérard, One-step synthesis of maghemite nanometric powders by ball-milling, J. Alloy. Compd. 333 (2002) 302-307.
DOI: 10.1016/s0925-8388(01)01737-6
Google Scholar
[21]
J.F. de Carvalho, S.N. de Medeiros, M.A. Morales, A.L. Dantas, A.S. Carriço, Synthesis of magnetite nanoparticles by high energy ball milling, Appl. Surf. Sci. 275 (2013) 84-87.
DOI: 10.1016/j.apsusc.2013.01.118
Google Scholar
[22]
P. Dutta, A. Manivannan, M.S. Seehra, N. Shah, G.P. Huffman, Magnetic properties of nearly defect-free maghemite nanocrystals, Phys. Rev. B 70 (2004) 174428.
DOI: 10.1103/physrevb.70.174428
Google Scholar
[23]
A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26 (2005) 3995-4021.
DOI: 10.1016/j.biomaterials.2004.10.012
Google Scholar