Preparation of Nanocrystalline Fe2O3 Powder by Cryomilling with Liquid Nitrogen and its Magnetic Property

Article Preview

Abstract:

Rapid preparation of nanocrystalline γ-Fe2O3 powder with superparamagnetism was realized by cryomilling commercial Fe2O3 powder using liquid nitrogen. The effects of milling temperature and duration on the grain size, phase and microstructure of the nanocrystalline Fe2O3 powder were analyzed. Magnetic property of the nanocrystalline γ-Fe2O3 powder was also tested by magnetometer at room temperature. The results demonstrate that nanocrystalline γ-Fe2O3 powder with single phase can be prepared rapidly by cryomilling with liquid nitrogen. The mean particle size of γ-Fe2O3 powder can be reduced from 300 nm to 13 nm by cryomilling at −130 °C within 3 hours. The nanocrystalline γ-Fe2O3 powder shows superparamagnetism at room temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

806-810

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Lee, T. Hyeon, Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents, Chem. Soc. Rev. 41 (2012) 2575-2589.

DOI: 10.1039/c1cs15248c

Google Scholar

[2] Z. Shen, A. Wu, X. Chen, Iron oxide nanoparticle based contrast agents for magnetic resonance imaging, Mol. Pharmaceutics 14 (2017) 1352-1364.

DOI: 10.1021/acs.molpharmaceut.6b00839

Google Scholar

[3] K. Hola, Z. Markova, G. Zoppellaro, J. Tucek, R. Zboril, Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances, Biotechnol. Adv. 33 (2015) 1162-1176.

DOI: 10.1016/j.biotechadv.2015.02.003

Google Scholar

[4] P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review, Sci. Total Environ. 424 (2012) 1-10.

DOI: 10.1016/j.scitotenv.2012.02.023

Google Scholar

[5] A. Espinosa, R. Di Corato, J. Kolosnjaj-Tabi, P. Flaud, T. Pellegrino, C. Wilhelm, Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment, ACS Nano 10 (2016) 2436-2446.

DOI: 10.1021/acsnano.5b07249

Google Scholar

[6] L.H. Shen, J.F. Bao, D. Wang, Y.X. Wang, Z.W. Chen, L. Ren, X. Zhou, X.B. Ke, M. Chen, A.Q. Yang, One-step synthesis of monodisperse, water-soluble ultra-small Fe3O4 nanoparticles for potential bioapplication, Nanoscale 5 (2013) 2133-2141.

DOI: 10.1039/c2nr33840h

Google Scholar

[7] H.C. Roth, S.P. Schwaminger, M. Schindler, F.E. Wagner, S. Berensmeier, Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: a model based study, J. Magn. Magn. Mater. 377 (2015) 81-89.

DOI: 10.1016/j.jmmm.2014.10.074

Google Scholar

[8] S. Belaïd, S. Laurent, M. Vermeersch, L.V. Elst, D. Perez-Morga, R.N. Muller, A new approach to follow the formation of iron oxide nanoparticles synthesized by thermal decomposition, Nanotechnology 24 (2013) 055705.

DOI: 10.1088/0957-4484/24/5/055705

Google Scholar

[9] K.S.M. Salih, P. Mamone, G. Dörr, T.O. Bauer, A. Brodyanski, C. Wagner, M. Kopnarski, R.N. Klupp Taylor, S. Demeshko, F. Meyer, V. Schünemann, S. Ernst, L.J. Gooẞen, W.R. Thiel, Facile synthesis of monodisperse maghemite and ferrite nanocrystals from metal powder and octanoic acid, Chem. Mater. 25 (2013) 1430-1435.

DOI: 10.1021/cm303344z

Google Scholar

[10] O.M. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani, M. Bououdina, Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties, Superlattice. Microst. 52 (2012) 793-799.

DOI: 10.1016/j.spmi.2012.07.009

Google Scholar

[11] H. Cui, Y. Liu, W. Ren, Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles, Adv. Powder Technol. 24 (2013) 93-97.

DOI: 10.1016/j.apt.2012.03.001

Google Scholar

[12] B.K. Sodipo, A.A. Aziz, Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica, J. Magn. Magn. Mater. 416 (2016) 275-291.

DOI: 10.1016/j.jmmm.2016.05.019

Google Scholar

[13] C. Song, W. Sun, Y. Xiao, X. Shi, Ultrasmall iron oxide nanoparticles: synthesis, surface modification, assembly, and biomedical applications, Drug. Discov. Today 24 (2019) 835-844.

DOI: 10.1016/j.drudis.2019.01.001

Google Scholar

[14] C.C. Koch, Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostruct. Mater. 9 (1997) 13-22.

Google Scholar

[15] C.F. Burmeister, A. Kwade, Process engineering with planetary ball mills, Chem. Soc. Rev. 42 (2013) 7660-7667.

DOI: 10.1039/c3cs35455e

Google Scholar

[16] H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering, Acta Mater. 61 (2013) 2769-2782.

DOI: 10.1016/j.actamat.2012.09.036

Google Scholar

[17] N. Kumar, K. Biswas, R.K. Gupta, Green synthesis of Ag nanoparticles in large quantity by cryomilling, RSC Adv. 6 (2016) 111380-111388.

DOI: 10.1039/c6ra23120a

Google Scholar

[18] Z. Khodsiani, H. Mansuri, T. Mirian, The effect of cryomilling on the morphology and particle size distribution of the NiCoCrAlYSi powders with and without nano-sized alumina, Powder Technol. 245 (2013) 7-12.

DOI: 10.1016/j.powtec.2013.04.010

Google Scholar

[19] G.F. Goya, Handling the particle size and distribution of Fe3O4 nanoparticles through ball milling, Solid State Commun. 130 (2004) 783-787.

DOI: 10.1016/j.ssc.2004.04.012

Google Scholar

[20] R. Janot, D. Guérard, One-step synthesis of maghemite nanometric powders by ball-milling, J. Alloy. Compd. 333 (2002) 302-307.

DOI: 10.1016/s0925-8388(01)01737-6

Google Scholar

[21] J.F. de Carvalho, S.N. de Medeiros, M.A. Morales, A.L. Dantas, A.S. Carriço, Synthesis of magnetite nanoparticles by high energy ball milling, Appl. Surf. Sci. 275 (2013) 84-87.

DOI: 10.1016/j.apsusc.2013.01.118

Google Scholar

[22] P. Dutta, A. Manivannan, M.S. Seehra, N. Shah, G.P. Huffman, Magnetic properties of nearly defect-free maghemite nanocrystals, Phys. Rev. B 70 (2004) 174428.

DOI: 10.1103/physrevb.70.174428

Google Scholar

[23] A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications, Biomaterials, 26 (2005) 3995-4021.

DOI: 10.1016/j.biomaterials.2004.10.012

Google Scholar