[1]
J. Bijwe, Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials—a review, Polym. Compos. 18 (1997) 378-396.
DOI: 10.1002/pc.10289
Google Scholar
[2]
B. Satapathy, J. Bijwe, Fade and recovery behavior of non-asbestos organic (NAO) composite friction materials based on combinations of rock fibers and organic fibers, J. Reinf. Plast. Compos. 24 (2005) 563-577.
DOI: 10.1177/0731684405043561
Google Scholar
[3]
R. Hinrichs, M.R. Soares, R. Lamb, M.R. Soares, M. Vasconcellos, Phase characterization of debris generated in brake pad coefficient of friction tests, Wear 270 (2011) 515-519.
DOI: 10.1016/j.wear.2011.01.004
Google Scholar
[4]
G. Yi, F. Yan, Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers, Wear 262 (2007) 121-129.
DOI: 10.1016/j.wear.2006.04.004
Google Scholar
[5]
I. Mutlu, O. Eldogan, F. Findik, Tribological properties of some phenolic composites suggested for automotive brakes, Tribology Int 39 (2006) 317-325.
DOI: 10.1016/j.triboint.2005.02.002
Google Scholar
[6]
F. Ahmadijokani, Y. Alaei, A. Shojaei, M. Arjmand, N. Yan, Frictional behavior of resin-based brake composites: Effect of carbon fibre reinforcement, Wear 420-421 (2019) 108-115.
DOI: 10.1016/j.wear.2018.12.098
Google Scholar
[7]
Z. Ji, W. Luo, K. Zhou, S. Hou, Q. Zhang, J. Li, H. Jin, Effects of the shapes and dimensions of mullite whisker on the friction and wear behaviors of resin-based friction materials, Wear 406-407 (2018) 118-125.
DOI: 10.1016/j.wear.2018.03.018
Google Scholar
[8]
N. Aranganathan, V. Mahale, J. Bijwe, Effects of aramid fiber concentration on the friction and wear characteristics of non-asbestos organic friction composites using standardized braking tests, Wear 354-355 (2016) 69-77.
DOI: 10.1016/j.wear.2016.03.002
Google Scholar
[9]
P. Cai, Z. Li, T. Wang, Q. Wang, Effect of aspect ratios of aramid fiber on mechanical and tribological behaviors of friction materials, Tribology Int. 92 (2015) 109-116.
DOI: 10.1016/j.triboint.2015.05.024
Google Scholar
[10]
M. Hao, R. Luo, Z. Hou, W. Yang, Q. Xiang, C. Yang, Effect of fiber-types on the braking performances of carbon/carbon composites, Wear 319 (2014) 145-149.
DOI: 10.1016/j.wear.2014.07.023
Google Scholar
[11]
J. Lee, J. Lee, S. Kwon, J. Kim, Effect of different reinforcement materials on the formation of secondary plateaus and friction properties in friction materials for automobiles, Tribology Int. 120 (2018) 70-79.
DOI: 10.1016/j.triboint.2017.12.020
Google Scholar
[12]
F. Ahmadijokani, A. Shojaei, M. Arjmand, Y. Alaei, N. Yan, Effect of short carbon fiber on thermal, mechanical and tribological behavior of phenolic-based brake friction materials, Compos. Part B: Eng. 168 (2019) 98-105.
DOI: 10.1016/j.compositesb.2018.12.038
Google Scholar
[13]
S. Wu, M. Yi, Y. Ge, L. Ran, K. Peng, Effect of carbon fiber reinforcement on the tribological performance and behavior of aircraft carbon brake discs, Carbon 117 (2017) 279-292.
DOI: 10.1016/j.carbon.2017.03.003
Google Scholar
[14]
P. Zhang, L. Zhang, K. Fu, P. Wu, J. Cao, C. Shijia, X. Qu, The effect of Al2O3 fiber additive on braking performance of copper-based brake pads utilized in high-speed railway train, Tribology Int. 135 (2019) 444-456.
DOI: 10.1016/j.triboint.2019.03.034
Google Scholar
[15]
Z. Ji, W. Luo, K. Zhou, S. Hou, Q. Zhang, J. Li, H. Jin, Effects of the shapes and dimensions of mullite whisker on the friction and wear behaviors of resin-based friction materials, Wear 406-407 (2018) 118-125.
DOI: 10.1016/j.wear.2018.03.018
Google Scholar
[16]
S. Kim, M. Cho, D. Lim, H. Jang, Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material, Wear 251 (2001) 1484-1491.
DOI: 10.1016/s0043-1648(01)00802-x
Google Scholar
[17]
Z. Zhu, L. Xu, G. Chen, Effect of different whiskers on the physical and tribological properties of non-metallic friction materials, Mater Des 32 (2011) 54–61.
DOI: 10.1016/j.matdes.2010.06.037
Google Scholar
[18]
G. Xie, G. Sui, R. Yang, Effects of potassium titanate whiskers and carbon fibers on the wear behavior of polyetheretherketone composite under water lubricated condition, Compos. Sci. Technol. 71 (2011) 828-835.
DOI: 10.1016/j.compscitech.2011.01.019
Google Scholar
[19]
H. Wang, Y. Zhu, X. Feng, X. Lu, The effect of self-assembly modified potassium titanate whiskers on the friction and wear behaviors of PEEK composites, Wear 269 (2010) 139-144.
DOI: 10.1016/j.wear.2010.03.018
Google Scholar
[20]
Z. Ji, H. Jin, W. Luo, F. Cheng, Y. Chen, Y. Ren, Y. Wu, S. Hou, The effect of crystallinity of potassium titanate whisker on the tribological behavior of NAO friction materials, Tribology Int. 107 (2017) 213-220.
DOI: 10.1016/j.triboint.2016.11.022
Google Scholar
[21]
B. Öztürk, S. Öztürk, Effects of resin type and fiber length on the mechanical and tribological properties of brake friction materials, Tribol. Lett. 42 (2011) 339-350.
DOI: 10.1007/s11249-011-9779-5
Google Scholar