[1]
F.L. Whipple, Meteorites and space travel, Astron. J. 52 (1947) 131.
Google Scholar
[2]
M. Davidson, S. Roberts, G. Castro, R.P. Dillon, A. Kunz, H. Kozachkov, M.D. Demetriou, W.L. Johnson, S. Nutt and D.C. Hofmann, Investigating Amorphous Metal Composite Architectures as Spacecraft Shielding, Adv. Eng. Mater. 15 (2013) 27-33.
DOI: 10.1002/adem.201200313
Google Scholar
[3]
X. Huang, Z. Ling, Z.D. Liu, H.S. Zhang and L.H. Dai, Amorphous alloy reinforced Whipple shield structure, Int. J. Impact Eng. 42 (2012) 1-10.
DOI: 10.1016/j.ijimpeng.2011.11.001
Google Scholar
[4]
L. Hamill, S. Roberts, M. Davidson, W.L. Johnson, S. Nutt and D.C. Hofmann, Hypervelocity Impact Phenomenon in Bulk Metallic Glasses and Composites, Adv. Eng. Mater. 16 (2014) 85-93.
DOI: 10.1002/adem.201300252
Google Scholar
[5]
D.C. Hofmann, L. Hamill, E. Christiansen and S. Nutt, Hypervelocity Impact Testing of a Metallic Glass-Stuffed Whipple Shield, Adv. Eng. Mater. 17 (2015) 1313-1322.
DOI: 10.1002/adem.201400518
Google Scholar
[6]
W. Zheng, Y.J. Huang, B.J. Pang and J. Shen, Hypervelocity impact on Zr51Ti5Ni10Cu25Al9 bulk metallic glass, Mater. Sci. Eng. A 529 (2011) 352-360.
DOI: 10.1016/j.msea.2011.09.043
Google Scholar
[7]
R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc. 181 (1977) 375-389.
DOI: 10.1093/mnras/181.3.375
Google Scholar
[8]
L.D. Libersky and A.G. Petschek, Smooth particle hydrodynamics with strength of materials, in Advances in the free-Lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method, Springer, 1991, pp.248-257.
DOI: 10.1007/3-540-54960-9_58
Google Scholar
[9]
L.B. Lucy, A numerical approach to the testing of the fission hypothesis, Astron. J. 82 (1977) 1013.
Google Scholar
[10]
G.R. Johnson, A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, Proc. 7th Inf. Sympo. Ballistics, (1983) 541-547.
Google Scholar
[11]
G.R. Johnson and W.H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, 21(1985) 31-48.
DOI: 10.1016/0013-7944(85)90052-9
Google Scholar
[12]
F. Yuan, V. Prakash and J.J. Lewandowski, Spall strength of a zirconium-based bulk metallic glass under shock-induced compression-and-shear loading, Mech. Mater. 41 (2009) 886-897.
DOI: 10.1016/j.mechmat.2009.01.025
Google Scholar
[13]
F. Yuan, V. Prakash and J.J. Lewandowski, Spall strength and Hugoniot elastic limit of a zirconium-based bulk metallic glass under planar shock compression, J. Mater. Res. 22 (2011) 402-411.
DOI: 10.1557/jmr.2007.0053
Google Scholar
[14]
F. Xi, Y. Yu, C. Dai, Y. Zhang and L. Cai, Shock compression response of a Zr-based bulk metallic glass up to 110 GPa, J. Appl. Phys. 108 (2010) 083537.
DOI: 10.1063/1.3501044
Google Scholar
[15]
S.G. Ma, Z.M. Jiao, J.W. Qiao, H.J. Yang, Y. Zhang and Z.H. Wang, Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2 high-entropy alloy, Mater. Sci. Eng. A 649 (2016) 35-38.
DOI: 10.1016/j.msea.2015.09.089
Google Scholar
[16]
J.W. Qiao, M.Y. Chu, L. Cheng, H.Y. Ye, H.J. Yang, S.G. Ma and Z.H. Wang, Plastic flows of in-situ metallic glass matrix composites upon dynamic loading, Mater. Lett. 119 (2014) 92-95.
DOI: 10.1016/j.matlet.2013.12.110
Google Scholar
[17]
R.F. Wu, Z.M. Jiao, Y.S. Wang, Z. Wang, Z.H. Wang, S.G. Ma and J.W. Qiao, Excellent plasticity of a new Ti-based metallic glass matrix composite upon dynamic loading, Mater. Sci. Eng. A 677 (2016) 376-383.
DOI: 10.1016/j.msea.2016.09.057
Google Scholar
[18]
M.Y. Chu, Z.M. Jiao, Z.H. Wang, Y.S. Wang, J.H. Zhang, H.J. Yang and J.W. Qiao, Different deformation behaviors of two in-situ Ti-based metallic glass matrix composites upon quasi-static and dynamic compressions, Mater. Sci. Eng. A 639(2015) 717-723.
DOI: 10.1016/j.msea.2015.05.091
Google Scholar
[19]
J. Pan, Y.X. Wang and Y. Li, Ductile fracture in notched bulk metallic glasses, Acta Mater. 136 (2017) 126-133.
DOI: 10.1016/j.actamat.2017.06.048
Google Scholar
[20]
W. Ma, H. Kou, J. Li, H. Chang and L. Zhou, Effect of strain rate on compressive behavior of Ti-based bulk metallic glass at room temperature, J. Alloys Compd. 472 (2009) 214-218.
DOI: 10.1016/j.jallcom.2008.04.043
Google Scholar
[21]
M.V. Silnikov, I.V. Guk, A.F. Nechunaev and N.N. Smirnov, Numerical simulation of hypervelocity impact problem for spacecraft shielding elements, Acta Astronaut. 150 (2018) 56-62.
DOI: 10.1016/j.actaastro.2017.08.030
Google Scholar
[22]
A.I.H. Committee, Properties and selection: nonferrous alloys and special-purpose materials, Asm Intl. Vol. 2, (1990).
DOI: 10.31399/asm.hb.v02.9781627081627
Google Scholar
[23]
Y.C. Kim, W.T. Kim and D.H. Kim, A development of Ti-based bulk metallic glass, Mater. Sci. Eng. A 375 (2004) 127-135.
DOI: 10.1016/j.msea.2003.10.115
Google Scholar