[1]
J.H. Zhou, L.Z. Zhao. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Scientific Reports, 2016, 6:29069.
DOI: 10.1038/srep29069
Google Scholar
[2]
J.H. Zhou, L.Z. Zhao. Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities. Acta Biomaterialia, 2016, 43:358-368.
DOI: 10.1016/j.actbio.2016.07.045
Google Scholar
[3]
M. Kobayashil, S. Shimizu. Cobalt proteins. Eur. J. Biochem, 1999, 261:1-9.
Google Scholar
[4]
K. Czarnek, S. Terpilowska, A. Siwicki. Selected aspects of the action of cobalt ions in the human body. Centr. Eur. J Immunol. 2015, 40(2):236-242.
DOI: 10.5114/ceji.2015.52837
Google Scholar
[5]
S. Kulanthaivel, U. Mishra, T. Agarwal, et al. Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceramics International, 2015, 41:11323-11333.
DOI: 10.1016/j.ceramint.2015.05.090
Google Scholar
[6]
K. Anselme. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 2:667-681.
DOI: 10.1016/s0142-9612(99)00242-2
Google Scholar
[7]
C. Wu, Y.H. Zhou, W. Fan, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobaltion release for bone tissue engineering. Biomaterials, 2012, 33:2076-2085.
DOI: 10.1016/j.biomaterials.2011.11.042
Google Scholar
[8]
E. Quinlan, S. Partap, M.M. Azevedo, et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 2:358-366.
DOI: 10.1016/j.biomaterials.2015.02.006
Google Scholar
[9]
S. Kargozar, N. Lotfibakhshaiesh, J. Ai, et al. Synthesis, physico-chemical and biological characterization of strontiumand cobalt substituted bioactive glasses for bone tissue engineering. Journal of Non-Crystalline Solids, 2016, 449:133-140.
DOI: 10.1016/j.jnoncrysol.2016.07.025
Google Scholar
[10]
Y.F. Zheng, Y.Y. Yang, Y. Deng. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. Materials Science & Engineering C, 2019, 99: 770-782.
DOI: 10.1016/j.msec.2019.02.020
Google Scholar
[11]
Z.G. Deng, B.C. Lin, Z.H. Jiang, et al. Hypoxia-Mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration. 2019, 15(6):1113-1124.
DOI: 10.7150/ijbs.32358
Google Scholar
[12]
J.Y. Park, J.E. Davies. Red blood cell and platelet interactions with titanium implant surfaces. Clin. Oral Implants Res, 2000, 11:530-539.
DOI: 10.1034/j.1600-0501.2000.011006530.x
Google Scholar
[13]
M. Nomi, A. Atala, P.D. Coppi, et al. Principals of neovascularization for tissue engineering, Mol. Aspects Med, 2002, 23:463-483.
DOI: 10.1016/s0098-2997(02)00008-0
Google Scholar
[14]
A. Perets, Y. Baruch, F. Weisbuch,et al. Enhancingthe vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A, 2003, 65:489-497.
DOI: 10.1002/jbm.a.10542
Google Scholar
[15]
Y.C. Huang, D.K. aigler, K.G. Rice, et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal celldriven bone regeneration.J. Bone Miner. Res., 2005, 20:848-857.
DOI: 10.1359/jbmr.041226
Google Scholar
[16]
D. Kaigler, Z. Wang, K. Horger, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J. Bone Miner. Res, 2006, 21:735-744.
DOI: 10.1359/jbmr.060120
Google Scholar
[17]
E.J. Battegay, J. Rupp, L. Iruela-Arispe, et al. PDGF-BB modulatesendothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J.Cell Biol, 1994, 125:917-928.
DOI: 10.1083/jcb.125.4.917
Google Scholar
[18]
P. Anat, B.Yaacov, W. Felix, et al. Enhancing the vascularization of three-dimensional porousalginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed. Mater. Res. 2003, 65A:489-497.
DOI: 10.1002/jbm.a.10542
Google Scholar
[19]
K.Darnell, Z. Wang, H. Kim, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. Journal of Boneandmineralresearch, 2006, (21)5:735-744.
DOI: 10.1359/jbmr.060120
Google Scholar
[20]
P. Emilie, L. Helene, V. Samuel, et al. Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-likecells. Journal of Cell Science, 2006, 119:2667-2678.
DOI: 10.1242/jcs.03004
Google Scholar
[21]
Q.D. Ke, K. Thomas, C. Max. Down-regulation of the expression of the FIH-1 and ARD-1 genes atthe transcriptional level by Nickel and Cobalt in the human lung adenocarcinoma A549 cell line. Int. J. Environ. Res. Public Health, 2005, 2(1):10-13.
DOI: 10.3390/ijerph2005010010
Google Scholar
[22]
M.L. Zhang, C.T. Wu, H.Y. Li, et al. Preparation, characterization and in vitro angiogenic capacity of cobalt substituted-tricalcium phosphate ceramics. Journal of Materials Chemistry, 2012, 22:21686.
DOI: 10.1039/c2jm34395a
Google Scholar
[23]
D. Michal, Z. Barbara, M. Elzbieta, et al. A simple way of modulating in vitro angiogenic response using Cu and Co-doped bioactive glasses. Materials Letters, 2018, 215:87-90.
DOI: 10.1016/j.matlet.2017.12.075
Google Scholar
[24]
Z.T. Birgani, F. Eelco, J.G. Marion, et al. Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomaterialia, 2016, 36:267-276.
DOI: 10.1016/j.actbio.2016.03.031
Google Scholar
[25]
H. Cummings, W.G. Han, S. Vahabzadeh, et al. Cobalt-Doped BrushiteCement: Preparation, Characterization, and In Vitro Interaction with Osteosarcoma Cells. The Minerals, Metals & Materials Society, 2017, 69 (8):1348-1353.
DOI: 10.1007/s11837-017-2376-9
Google Scholar
[26]
N. Fani, M. Farokhi, M. Azami, et al. Endothelial and osteoblast differentiation of adipose-derived mesenchymal stem cells using a cobalt-doped CaP/Silk fibroin scaffold. ACS Biomater. Sci. Eng, 2019, 5:2134-2146.
DOI: 10.1021/acsbiomaterials.8b01372
Google Scholar
[27]
Z.T. Chen, Y. Jones, C. Ross, et al. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate. Biomaterials, 2015, 61:126-138.
DOI: 10.1016/j.biomaterials.2015.04.044
Google Scholar
[28]
D.M. Vasconcelos, G.S. Susana, L. Meriem, et al.The two faces of metal ions: from implants rejection to tissue repair/regeneration. Biomaterials, 2016, 84:262-275.
DOI: 10.1016/j.biomaterials.2016.01.046
Google Scholar
[29]
A.Touseef, M.S. Hassanb, P. Muthuraman, et al. Characterization and potent bactericidal effect of cobalt dopedtitanium dioxide nanofibers. Ceramics International, 2013, 39:3189-3193.
DOI: 10.1016/j.ceramint.2012.10.003
Google Scholar
[30]
R. Karthik, S. Thambidurai. Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. Journal of Alloys and Compounds, 2017, 715:254-265.
DOI: 10.1016/j.jallcom.2017.04.298
Google Scholar
[31]
A. Simo, M. Drahc, N.R.S. Sibuyi, et al. Hydrothermal synthesis of cobalt-doped vanadium oxides: antimicrobial activity study. Ceramics International, 2018, 44:7716-7722.
DOI: 10.1016/j.ceramint.2018.01.198
Google Scholar
[32]
Q.F. Zhao, M. Wang, H. Yang, et al. Preparation, characterization and the antimicrobial properties of metal iondoped TiO2 nano-powders. Ceramics International, 2018, 44:5145-5154.
DOI: 10.1016/j.ceramint.2017.12.117
Google Scholar
[33]
Y. Chen, D.Y. Huang, F. Yu, et al. Effect of Co ion implantation on friction and wear behavior of Fe-based amorphous alloy. Heat Treatment of Metals, 2009, 34(2):10-13.
Google Scholar
[34]
J.A. Guo, X. Cai, Q.L. Chen, et al. Effect of metal vapor vacuum arc ion source Co ion implantation on friction and wear properties of stainless steel. Tribology, 2003, 23(6):480-484.
Google Scholar
[35]
J.X. Guo, X. Cai, Q.L. Chen. Investigation on the tribology of Co implanted stainlesss teel using metal vapor vacuum arc ion source. J. Mater. Sci. Technol, 2004, 20 (3):265-268.
Google Scholar
[36]
R.C. Zhang, X.X. Zhang, M.F. Qian, et al. Effect of Co-doping on the microstructure, martensitic transformation behavior, and magnetocaloric effect of Ni-Mn-Sb-Si ferromagnetic shape memory alloys. The Minerals, Metals & Materials Society and ASM International, 2018, 49:6416-6425.
DOI: 10.1007/s11661-018-4942-3
Google Scholar
[37]
M. Kok, H.S. Zardawi, I.N. Qader, et al. The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus, 2019, 134: 197-205.
DOI: 10.1140/epjp/i2019-12570-9
Google Scholar
[38]
H. Zhu, J.H. Deng, Y.Y. Yang, et al. Cobalt nanowire-based multifunctional platform for targeted chemophotothermal synergistic cancer therapy. Colloids and Surfaces B: Biointerfaces. 2019, 180:401-410.
DOI: 10.1016/j.colsurfb.2019.05.005
Google Scholar