Cobalt Element Doping for Biomedical Use: A Review

Article Preview

Abstract:

Cobalt exists widely in nature and is one of the essential functional elements in human body, performing in organic or inorganic forms. The lackness of adequate bone integration is a main issue to limit the biomedical substitute materials using widely in clinic. However, introducing cobalt element onto the surface of the materials can significantly change the biological behavior of the implants, which is a good way to solve the above problem. In this paper, the effects of doped cobalt ions on the biological properties of different materials were reviewed, and the development trend of cobalt ion doped biomedical device was prospected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

811-819

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.H. Zhou, L.Z. Zhao. Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Scientific Reports, 2016, 6:29069.

DOI: 10.1038/srep29069

Google Scholar

[2] J.H. Zhou, L.Z. Zhao. Hypoxia-mimicking Co doped TiO2 microporous coating on titanium with enhanced angiogenic and osteogenic activities. Acta Biomaterialia, 2016, 43:358-368.

DOI: 10.1016/j.actbio.2016.07.045

Google Scholar

[3] M. Kobayashil, S. Shimizu. Cobalt proteins. Eur. J. Biochem, 1999, 261:1-9.

Google Scholar

[4] K. Czarnek, S. Terpilowska, A. Siwicki. Selected aspects of the action of cobalt ions in the human body. Centr. Eur. J Immunol. 2015, 40(2):236-242.

DOI: 10.5114/ceji.2015.52837

Google Scholar

[5] S. Kulanthaivel, U. Mishra, T. Agarwal, et al. Improving the osteogenic and angiogenic properties of synthetic hydroxyapatite by dual doping of bivalent cobalt and magnesium ion. Ceramics International, 2015, 41:11323-11333.

DOI: 10.1016/j.ceramint.2015.05.090

Google Scholar

[6] K. Anselme. Osteoblast adhesion on biomaterials. Biomaterials, 2000, 2:667-681.

DOI: 10.1016/s0142-9612(99)00242-2

Google Scholar

[7] C. Wu, Y.H. Zhou, W. Fan, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobaltion release for bone tissue engineering. Biomaterials, 2012, 33:2076-2085.

DOI: 10.1016/j.biomaterials.2011.11.042

Google Scholar

[8] E. Quinlan, S. Partap, M.M. Azevedo, et al. Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 2:358-366.

DOI: 10.1016/j.biomaterials.2015.02.006

Google Scholar

[9] S. Kargozar, N. Lotfibakhshaiesh, J. Ai, et al. Synthesis, physico-chemical and biological characterization of strontiumand cobalt substituted bioactive glasses for bone tissue engineering. Journal of Non-Crystalline Solids, 2016, 449:133-140.

DOI: 10.1016/j.jnoncrysol.2016.07.025

Google Scholar

[10] Y.F. Zheng, Y.Y. Yang, Y. Deng. Dual therapeutic cobalt-incorporated bioceramics accelerate bone tissue regeneration. Materials Science & Engineering C, 2019, 99: 770-782.

DOI: 10.1016/j.msec.2019.02.020

Google Scholar

[11] Z.G. Deng, B.C. Lin, Z.H. Jiang, et al. Hypoxia-Mimicking cobalt-doped borosilicate bioactive glass scaffolds with enhanced angiogenic and osteogenic capacity for bone regeneration. 2019, 15(6):1113-1124.

DOI: 10.7150/ijbs.32358

Google Scholar

[12] J.Y. Park, J.E. Davies. Red blood cell and platelet interactions with titanium implant surfaces. Clin. Oral Implants Res, 2000, 11:530-539.

DOI: 10.1034/j.1600-0501.2000.011006530.x

Google Scholar

[13] M. Nomi, A. Atala, P.D. Coppi, et al. Principals of neovascularization for tissue engineering, Mol. Aspects Med, 2002, 23:463-483.

DOI: 10.1016/s0098-2997(02)00008-0

Google Scholar

[14] A. Perets, Y. Baruch, F. Weisbuch,et al. Enhancingthe vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J. Biomed. Mater. Res. A, 2003, 65:489-497.

DOI: 10.1002/jbm.a.10542

Google Scholar

[15] Y.C. Huang, D.K. aigler, K.G. Rice, et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal celldriven bone regeneration.J. Bone Miner. Res., 2005, 20:848-857.

DOI: 10.1359/jbmr.041226

Google Scholar

[16] D. Kaigler, Z. Wang, K. Horger, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J. Bone Miner. Res, 2006, 21:735-744.

DOI: 10.1359/jbmr.060120

Google Scholar

[17] E.J. Battegay, J. Rupp, L. Iruela-Arispe, et al. PDGF-BB modulatesendothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J.Cell Biol, 1994, 125:917-928.

DOI: 10.1083/jcb.125.4.917

Google Scholar

[18] P. Anat, B.Yaacov, W. Felix, et al. Enhancing the vascularization of three-dimensional porousalginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed. Mater. Res. 2003, 65A:489-497.

DOI: 10.1002/jbm.a.10542

Google Scholar

[19] K.Darnell, Z. Wang, H. Kim, et al. VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. Journal of Boneandmineralresearch, 2006, (21)5:735-744.

DOI: 10.1359/jbmr.060120

Google Scholar

[20] P. Emilie, L. Helene, V. Samuel, et al. Synergistic effects of CoCl2 and ROCK inhibition on mesenchymal stem cell differentiation into neuron-likecells. Journal of Cell Science, 2006, 119:2667-2678.

DOI: 10.1242/jcs.03004

Google Scholar

[21] Q.D. Ke, K. Thomas, C. Max. Down-regulation of the expression of the FIH-1 and ARD-1 genes atthe transcriptional level by Nickel and Cobalt in the human lung adenocarcinoma A549 cell line. Int. J. Environ. Res. Public Health, 2005, 2(1):10-13.

DOI: 10.3390/ijerph2005010010

Google Scholar

[22] M.L. Zhang, C.T. Wu, H.Y. Li, et al. Preparation, characterization and in vitro angiogenic capacity of cobalt substituted-tricalcium phosphate ceramics. Journal of Materials Chemistry, 2012, 22:21686.

DOI: 10.1039/c2jm34395a

Google Scholar

[23] D. Michal, Z. Barbara, M. Elzbieta, et al. A simple way of modulating in vitro angiogenic response using Cu and Co-doped bioactive glasses. Materials Letters, 2018, 215:87-90.

DOI: 10.1016/j.matlet.2017.12.075

Google Scholar

[24] Z.T. Birgani, F. Eelco, J.G. Marion, et al. Stimulatory effect of cobalt ions incorporated into calcium phosphate coatings on neovascularization in an in vivo intramuscular model in goats. Acta Biomaterialia, 2016, 36:267-276.

DOI: 10.1016/j.actbio.2016.03.031

Google Scholar

[25] H. Cummings, W.G. Han, S. Vahabzadeh, et al. Cobalt-Doped BrushiteCement: Preparation, Characterization, and In Vitro Interaction with Osteosarcoma Cells. The Minerals, Metals & Materials Society, 2017, 69 (8):1348-1353.

DOI: 10.1007/s11837-017-2376-9

Google Scholar

[26] N. Fani, M. Farokhi, M. Azami, et al. Endothelial and osteoblast differentiation of adipose-derived mesenchymal stem cells using a cobalt-doped CaP/Silk fibroin scaffold. ACS Biomater. Sci. Eng, 2019, 5:2134-2146.

DOI: 10.1021/acsbiomaterials.8b01372

Google Scholar

[27] Z.T. Chen, Y. Jones, C. Ross, et al. The effect of osteoimmunomodulation on the osteogenic effects of cobalt incorporated β-tricalcium phosphate. Biomaterials, 2015, 61:126-138.

DOI: 10.1016/j.biomaterials.2015.04.044

Google Scholar

[28] D.M. Vasconcelos, G.S. Susana, L. Meriem, et al.The two faces of metal ions: from implants rejection to tissue repair/regeneration. Biomaterials, 2016, 84:262-275.

DOI: 10.1016/j.biomaterials.2016.01.046

Google Scholar

[29] A.Touseef, M.S. Hassanb, P. Muthuraman, et al. Characterization and potent bactericidal effect of cobalt dopedtitanium dioxide nanofibers. Ceramics International, 2013, 39:3189-3193.

DOI: 10.1016/j.ceramint.2012.10.003

Google Scholar

[30] R. Karthik, S. Thambidurai. Synthesis of cobalt doped ZnO/reduced graphene oxide nanorods as active material for heavy metal ions sensor and antibacterial activity. Journal of Alloys and Compounds, 2017, 715:254-265.

DOI: 10.1016/j.jallcom.2017.04.298

Google Scholar

[31] A. Simo, M. Drahc, N.R.S. Sibuyi, et al. Hydrothermal synthesis of cobalt-doped vanadium oxides: antimicrobial activity study. Ceramics International, 2018, 44:7716-7722.

DOI: 10.1016/j.ceramint.2018.01.198

Google Scholar

[32] Q.F. Zhao, M. Wang, H. Yang, et al. Preparation, characterization and the antimicrobial properties of metal iondoped TiO2 nano-powders. Ceramics International, 2018, 44:5145-5154.

DOI: 10.1016/j.ceramint.2017.12.117

Google Scholar

[33] Y. Chen, D.Y. Huang, F. Yu, et al. Effect of Co ion implantation on friction and wear behavior of Fe-based amorphous alloy. Heat Treatment of Metals, 2009, 34(2):10-13.

Google Scholar

[34] J.A. Guo, X. Cai, Q.L. Chen, et al. Effect of metal vapor vacuum arc ion source Co ion implantation on friction and wear properties of stainless steel. Tribology, 2003, 23(6):480-484.

Google Scholar

[35] J.X. Guo, X. Cai, Q.L. Chen. Investigation on the tribology of Co implanted stainlesss teel using metal vapor vacuum arc ion source. J. Mater. Sci. Technol, 2004, 20 (3):265-268.

Google Scholar

[36] R.C. Zhang, X.X. Zhang, M.F. Qian, et al. Effect of Co-doping on the microstructure, martensitic transformation behavior, and magnetocaloric effect of Ni-Mn-Sb-Si ferromagnetic shape memory alloys. The Minerals, Metals & Materials Society and ASM International, 2018, 49:6416-6425.

DOI: 10.1007/s11661-018-4942-3

Google Scholar

[37] M. Kok, H.S. Zardawi, I.N. Qader, et al. The effects of cobalt elements addition on Ti2Ni phases, thermodynamics parameters, crystal structure and transformation temperature of NiTi shape memory alloys. The European Physical Journal Plus, 2019, 134: 197-205.

DOI: 10.1140/epjp/i2019-12570-9

Google Scholar

[38] H. Zhu, J.H. Deng, Y.Y. Yang, et al. Cobalt nanowire-based multifunctional platform for targeted chemophotothermal synergistic cancer therapy. Colloids and Surfaces B: Biointerfaces. 2019, 180:401-410.

DOI: 10.1016/j.colsurfb.2019.05.005

Google Scholar