[1]
M.P. Bichat, T. Politova, H. Pfeiffer, F.T Ancret, L. Monconduit, J.L. Pascal, T.Brousse, F. Favier, Cu3P as anode material for lithium ion battery: Powder morphology and electrochemical performances, J.Power Sources. 136 (2004) 80–87.
DOI: 10.1016/j.jpowsour.2004.05.024
Google Scholar
[2]
D.C.S. Souza, V. Pralong, A.J. Jacobson, L.F. Nazar,A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry, Science. 296 (2002) 2012–(2015).
DOI: 10.1126/science.1071079
Google Scholar
[3]
R. Mogensen, J. Maibach, W.R. Brant, D. Brandell, R. Younesi, Evolution of the solid electrolyte interphase on tin phosphide anodes in sodium ion batteries probed by hard x-ray photoelectron spectroscopy, Electrochim. Acta. 245 (2017) 696–704.
DOI: 10.1016/j.electacta.2017.05.173
Google Scholar
[4]
S.T. Oyama, Novel catalysts for advanced hydroprocessing: transition metal phosphides, J. Catal. 216 (2003) 343–352.
DOI: 10.1016/s0021-9517(02)00069-6
Google Scholar
[5]
Y.U. Kim, C.K. Lee, H.J. Sohn, T. Kanga, Reaction mechanism of tin phosphide anode by mechanochemical method for lithium secondary batteries, J. Electrochem. Soc. 151 (2004) A933–937.
DOI: 10.1149/1.1738679
Google Scholar
[6]
Y. Kim, H. Hwang, C.S. Yoon, M.G. Kim, J. Cho, Reversible lithium intercalation in teardrop-shaped ultrafine SnP0.94particles: an anode material for lithium-ion batteries, Adv. Mater. 19 (2007) 92–96.
DOI: 10.1002/adma.200600644
Google Scholar
[7]
K.A. Kovnira, Y.V. Kolen'ko, S. Ray, J. Li, T. Watanabe, M, Itoh, M. Yoshimura, A.V. Shevelkov, A facile high-yield solvothermal route to tin phosphide Sn4P3, J.SolidStateChem. 179 (2006) 3756–3762.
DOI: 10.1016/j.jssc.2006.08.012
Google Scholar
[8]
S.T. Oyama, T. Gott, H. Zhao, Y.K. Lee, Transition metal phosphide hydroprocessing catalysts: A review, Catal.Today. 143 (2009) 94–107.
DOI: 10.1016/j.cattod.2008.09.019
Google Scholar
[9]
O. Olofsson, U. Aava, A. Haaland, D. Resser, S.E. Rasmussen, E. Sunde, N.A. Sorensen, X-Ray Investigations of the tin-phosphorus system, ActaChem. Scand. 24 (1970) 1153–1162.
DOI: 10.3891/acta.chem.scand.24-1153
Google Scholar
[10]
X. Fan, T. Gao, C. Luo, F. Wang, J. Hu, C. Wang, Superior reversible tin phosphide–carbon spheres for sodium ion battery anode, Nano Energy. 38 (2017) 350–357.
DOI: 10.1016/j.nanoen.2017.06.014
Google Scholar
[11]
T. Nobuki, J.C. Crivello, F. Cuevas, J.M. Joubert, Fast synthesis of TiNi by mechanical alloying and its hydrogenation properties, Int. J. Hydrogen Energ. 44(21) (2019) 10770–10776.
DOI: 10.1016/j.ijhydene.2019.02.203
Google Scholar
[12]
H. Ghayour, M. Abdellahi, M. Bahmanpour, Optimization of the high energy ball-milling: modeling and parametric study, PowderTechnol. 291 (2016) 7–13.
DOI: 10.1016/j.powtec.2015.12.004
Google Scholar
[13]
F. Hadef, Solid- state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review, J. Magn. Magn. Mater. 419 (2016) 105–118.
DOI: 10.1016/j.jmmm.2016.06.021
Google Scholar
[14]
G. Dercz, I. Matu, J. Maszybrocka, M. Zubko, J. Barczyk, L. Pajak, S. Stach, Effect of milling time and presence of Sn on the microstructure and porosity of sintered Ti–10Ta–8Mo and Ti–10Ta–8Mo–3Sn alloys, J.Alloy.Compd. 791 (2019) 232–247.
DOI: 10.1016/j.jallcom.2019.03.287
Google Scholar
[15]
M. Broseghini, L. Gelisio, M. D'Incau, C.L. Azanza Ricardo, N.M. Pugno, P. Scardi, Modeling of the planetary ball-milling process: the case study of ceramic powders, J. Eur. Ceram. Soc. 36 (2016) 2205–2212.
DOI: 10.1016/j.jeurceramsoc.2016.09.026
Google Scholar
[16]
M. Bouras, A. Boumaiza, V. Ji, N. Rouag, XRD peak broadening characterization of deformed microstructures and heterogeneous behavior of carbon steel, Theor. Appl. Fract. Mec. 61 (2012) 51–56.
DOI: 10.1016/j.tafmec.2012.08.006
Google Scholar
[17]
Y. Saberi, S.M. Zebarjad, G.H. Akbari, On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite, J.Alloy.Compd. 484 (2009) 637–640.
DOI: 10.1016/j.jallcom.2009.05.009
Google Scholar