[1]
A. Baroutaji, M. Sajjia, A.G. Olabi, On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments, Thin. Wall. Struct. 118 (2017) 137-163.
DOI: 10.1016/j.tws.2017.05.018
Google Scholar
[2]
K. Vinayagar, A. Senthil Kumar, Crashworthiness analysis of double section bi-tubular thin-walled structures,Thin. Wall. Struct. 112 (2017) 184-193.
DOI: 10.1016/j.tws.2016.12.008
Google Scholar
[3]
N. Movahedi, E. Linul, Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions, Mater. Lett. 206 (2017) 182-184.
DOI: 10.1016/j.matlet.2017.07.018
Google Scholar
[4]
T. Y. Reddy, R. J.Wall, Axial compression of foam-filled thin-walled circular tubes, Int. J. Impact. Eng. 7 (1988) 151-166.
DOI: 10.1016/0734-743x(88)90023-1
Google Scholar
[5]
S. R. Guillow, G. Lu, R. H. Grzebieta, Quasi-static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci. 43 (2001) 2103-2123.
DOI: 10.1016/s0020-7403(01)00031-5
Google Scholar
[6]
Z. Ahmad, D. Thambiratnam, A. Tan, Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading, Int. J. Impact. Eng. 37 (2010) 475-88.
DOI: 10.1016/j.ijimpeng.2009.11.010
Google Scholar
[7]
I. Duarte, M. Vesenjak, L. Krstulović-Opara.Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam, Compos. Struct. 109 (2014) 48-56.
DOI: 10.1016/j.compstruct.2013.10.040
Google Scholar
[8]
I. Duarte, M. Vesenjak, L. Krstulović-Opara,Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foam,Compos. Struct. 154 (2016) 231-238.
DOI: 10.1016/j.compstruct.2016.07.038
Google Scholar
[9]
I. Duarte, M. Vesenjak, L. Krstulović-Opara, Z. Ren, Static and dynamic axial crush performance of in-situ foam-filled tubes,Compos. Struct. 124 (2015) 128-139.
DOI: 10.1016/j.compstruct.2015.01.014
Google Scholar
[10]
I. Duarte, M. Vesenjak, L. Krstulović-Opara, Axial crush behaviour of the aluminium alloy, in-situ, foam filled tubes with very low wall thickness, Compos. Struct. 192 (2018) 184-192.
DOI: 10.1016/j.compstruct.2018.02.094
Google Scholar
[11]
S. P. Santosa, Crash behavior of box columns filled with aluminum honeycomb or foam,Comput. Struct. 68 (1998) 343-367.
DOI: 10.1016/s0045-7949(98)00067-4
Google Scholar
[12]
S. P. Santosa, T. Wierzbicki, A. G. Hanssen, M. Langseth, Experimental and Numerical Studies Of Foam-Filled Sections, Int. J. Impact. Eng. 24 (2000) 509-534.
DOI: 10.1016/s0734-743x(99)00036-6
Google Scholar
[13]
A. G. Hanssen, M. Langseth, O. S. Hopperstad, Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler,Int. J. Impact. Eng. 24 (2000)475-507.
DOI: 10.1016/s0734-743x(99)00170-0
Google Scholar
[14]
M. Seitzberger, S. Willminger, Application of plastic collapse mechanisms for the axial crushing analysis of tubular steel structures filled with aluminium foam, Int. J. Crashworthines. 6 (2001) 165-176.
DOI: 10.1533/cras.2001.0170
Google Scholar
[15]
M. Güden, S. Yüksel, A. Taşdemirci, M. Tanoğlu, Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes,Compos. Struct. 81 (2007) 480-490.
DOI: 10.1016/j.compstruct.2006.09.005
Google Scholar
[16]
J. M. Alexander, Q. J. Mech. An approximate analysis of the collapse of thin cylindrical shells under axial loading, Appl. Math. 13 (1960) 10-15.
DOI: 10.1093/qjmam/13.1.10
Google Scholar
[17]
A. G. Mamalis, D.E. Manolakos, A.K. Baldoukas, G.L. Viegelahn,Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders, Thin. Wall. Struct. 12 (1991) 17-34.
DOI: 10.1016/0263-8231(91)90024-d
Google Scholar
[18]
W. Abramowicz, N. Jones, Dynamic progressive buckling of circular and square tubes, Int. J. Impact. Eng. 4 (1986) 243-270.
DOI: 10.1016/0734-743x(86)90017-5
Google Scholar