Quasi-Static Axial Compression Behavior and Energy Absorption Evaluation of Steel Foam-Filled Tubes

Article Preview

Abstract:

The aim of this paper is to study the quasi-static axial compressive performance of newly developed steel foam-filled tubes (SFFTs). The energy absorption capability of steel foam-filled tubes was assessed. The results show that steel foam-filled tubes collapse in the axisymmetric-concertina deformation mode. The plateau stress of the plastic deformation of the steel foam-filled tubes decreases with the increase of porosity of steel foams, and is significantly higher than the sum of the identical steel foam and aluminum tube. The absorbed energy per unit volume of the steel foam-filled tubes is 8%~ 15% higher than the sum of those of identical aluminum tubes and steel foams with porosity ranging from 65% to 80%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

863-868

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Baroutaji, M. Sajjia, A.G. Olabi, On the crashworthiness performance of thin-walled energy absorbers: Recent advances and future developments, Thin. Wall. Struct. 118 (2017) 137-163.

DOI: 10.1016/j.tws.2017.05.018

Google Scholar

[2] K. Vinayagar, A. Senthil Kumar, Crashworthiness analysis of double section bi-tubular thin-walled structures,Thin. Wall. Struct. 112 (2017) 184-193.

DOI: 10.1016/j.tws.2016.12.008

Google Scholar

[3] N. Movahedi, E. Linul, Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions, Mater. Lett. 206 (2017) 182-184.

DOI: 10.1016/j.matlet.2017.07.018

Google Scholar

[4] T. Y. Reddy, R. J.Wall, Axial compression of foam-filled thin-walled circular tubes, Int. J. Impact. Eng. 7 (1988) 151-166.

DOI: 10.1016/0734-743x(88)90023-1

Google Scholar

[5] S. R. Guillow, G. Lu, R. H. Grzebieta, Quasi-static Axial Compression of Thin-Walled Circular Aluminium Tubes, Int. J. Mech. Sci. 43 (2001) 2103-2123.

DOI: 10.1016/s0020-7403(01)00031-5

Google Scholar

[6] Z. Ahmad, D. Thambiratnam, A. Tan, Dynamic energy absorption characteristics of foam-filled conical tubes under oblique impact loading, Int. J. Impact. Eng. 37 (2010) 475-88.

DOI: 10.1016/j.ijimpeng.2009.11.010

Google Scholar

[7] I. Duarte, M. Vesenjak, L. Krstulović-Opara.Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam, Compos. Struct. 109 (2014) 48-56.

DOI: 10.1016/j.compstruct.2013.10.040

Google Scholar

[8] I. Duarte, M. Vesenjak, L. Krstulović-Opara,Compressive behaviour of unconstrained and constrained integral-skin closed-cell aluminium foam,Compos. Struct. 154 (2016) 231-238.

DOI: 10.1016/j.compstruct.2016.07.038

Google Scholar

[9] I. Duarte, M. Vesenjak, L. Krstulović-Opara, Z. Ren, Static and dynamic axial crush performance of in-situ foam-filled tubes,Compos. Struct. 124 (2015) 128-139.

DOI: 10.1016/j.compstruct.2015.01.014

Google Scholar

[10] I. Duarte, M. Vesenjak, L. Krstulović-Opara, Axial crush behaviour of the aluminium alloy, in-situ, foam filled tubes with very low wall thickness, Compos. Struct. 192 (2018) 184-192.

DOI: 10.1016/j.compstruct.2018.02.094

Google Scholar

[11] S. P. Santosa, Crash behavior of box columns filled with aluminum honeycomb or foam,Comput. Struct. 68 (1998) 343-367.

DOI: 10.1016/s0045-7949(98)00067-4

Google Scholar

[12] S. P. Santosa, T. Wierzbicki, A. G. Hanssen, M. Langseth, Experimental and Numerical Studies Of Foam-Filled Sections, Int. J. Impact. Eng. 24 (2000) 509-534.

DOI: 10.1016/s0734-743x(99)00036-6

Google Scholar

[13] A. G. Hanssen, M. Langseth, O. S. Hopperstad, Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler,Int. J. Impact. Eng. 24 (2000)475-507.

DOI: 10.1016/s0734-743x(99)00170-0

Google Scholar

[14] M. Seitzberger, S. Willminger, Application of plastic collapse mechanisms for the axial crushing analysis of tubular steel structures filled with aluminium foam, Int. J. Crashworthines. 6 (2001) 165-176.

DOI: 10.1533/cras.2001.0170

Google Scholar

[15] M. Güden, S. Yüksel, A. Taşdemirci, M. Tanoğlu, Effect of aluminum closed-cell foam filling on the quasi-static axial crush performance of glass fiber reinforced polyester composite and aluminum/composite hybrid tubes,Compos. Struct. 81 (2007) 480-490.

DOI: 10.1016/j.compstruct.2006.09.005

Google Scholar

[16] J. M. Alexander, Q. J. Mech. An approximate analysis of the collapse of thin cylindrical shells under axial loading, Appl. Math. 13 (1960) 10-15.

DOI: 10.1093/qjmam/13.1.10

Google Scholar

[17] A. G. Mamalis, D.E. Manolakos, A.K. Baldoukas, G.L. Viegelahn,Energy dissipation and associated failure modes when axially loading polygonal thin-walled cylinders, Thin. Wall. Struct. 12 (1991) 17-34.

DOI: 10.1016/0263-8231(91)90024-d

Google Scholar

[18] W. Abramowicz, N. Jones, Dynamic progressive buckling of circular and square tubes, Int. J. Impact. Eng. 4 (1986) 243-270.

DOI: 10.1016/0734-743x(86)90017-5

Google Scholar