Effect of Hydrothermal Conditions on Crystal Structure, Morphology and Visible-Light Driven Photocatalysis of WO3 Nanostructures

Article Preview

Abstract:

Tungsten trioxide (WO3) nanostructures were synthesized by a hydrothermal method, and the influence of essential hydrothermal conditions, temperature and time, on their crystal structure, morphology and visible-light driven photocatalysis was studied. The hydrothermal temperature was varied from 120 °C to 200 °C, and the hydrothermal time changed from 12 h to 32 h. The crystal structure, morphology and photocatalytic performance of WO3 nanostructures were characterized by XRD, SEM and UV-Vis. The crystal structure of WO3 nanostructure was triclinic phase and their morphology was mainly one dimensional nanorods. Methylene blue was used as the target to evaluate their photocatalytic performance under visible light (λ>420 nm). The photocatalytic results suggest the suitable hydrothermal conditions to synthesize WO3 nanostructures for the wastewater treatment application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

893-898

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.M. Wu, S. Naseem, M.H. Chou, J.H. Wang, Y.Q. Jian, Recent advances in tungsten-oxide-based materials and their applications, Front. Mater, 6 (2019) 1-17.

DOI: 10.3389/fmats.2019.00049

Google Scholar

[2] A. Gasparotto, G. Carraro, C. Maccato, C. Sada, J. Balbuena, M. Cruz-Yusta, L. Sanchez, N. Vodisek, U.L. Stangarde, D. Barreca, WO3-decorated ZnO nanostructures for light-activated applications, CrystEngComm, 20 (2018) 1282-1290.

DOI: 10.1039/c7ce02148h

Google Scholar

[3] S.H. Li, Z.R. Yao, J.X. Zhou, R. Zhang, H. Shen, Fabrication and characterization of WO3 thin films on silicon surface by thermal evaporation, Mater. Lett., 195 (2017) 213-216.

DOI: 10.1016/j.matlet.2017.02.078

Google Scholar

[4] P.F. Zhou, Y.B. Shen, S.K. Zhao, G.D. Li, Y.Y. Yin, R. Lu, S.L. Gao, C. Han, D.Z. Wei, NO2 sensing properties of WO3 porous films with honeycomb structure, J. Alloys Compd., 789 (2019) 129-138.

DOI: 10.1016/j.jallcom.2019.03.038

Google Scholar

[5] Y. Liang, Y. Yang, C.W. Zou, K. Xu, X.F. Luo, T. Luo, J.Y. Li, Q. Yang, P.Y. Shi, C.L. Yuan, 2D ultra-thin WO3 nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation, J. Alloys Compd., 783 (2019) 848-854.

DOI: 10.1016/j.jallcom.2018.12.384

Google Scholar

[6] A.C. Anithaa, K. Asokan, C. Sekar, Low energy nitrogen ion beam implanted tungsten trioxide thin films modified indium tin oxide electrode based acetylcholine sensor, J. Taiwan Inst. Chem. Eng., 84 (2018) 11-18.

DOI: 10.1016/j.jtice.2018.01.001

Google Scholar

[7] Y.M. Hunge, A.A. Yadav, M.A. Mahadik, V.L. Mathe, C.H. Bhosale, A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue, J. Taiwan Inst. Chem. Eng., 85 (2018) 273-281.

DOI: 10.1016/j.jtice.2018.01.048

Google Scholar

[8] M.L. Luna, M.A. Alvarez-Amparan, L. Cedeno-Caero, Performance of WOx-VOx based catalysts for ODS of dibenzothiophene compounds, J. Taiwan Inst. Chem. Eng., 95 (2019) 175-184.

DOI: 10.1016/j.jtice.2018.06.010

Google Scholar

[9] C.S. Prajapati, N. Bhat, ppb level detection of NO2 using a WO3 thin film-based sensor: material optimization, device fabrication and packaging, RSC Adv., 8 (2018) 6590-6599.

DOI: 10.1039/c7ra13659e

Google Scholar

[10] Y. Xiong, Z.Y. Zhu, T.C. Guo, H. Li, Q.Z. Xue, Synthesis of nanowire bundle-like WO3-W18O49 heterostructures for highly sensitive NH3 sensor application, J. Hazard. Mater., 353 (2018) 290-299.

DOI: 10.1016/j.jhazmat.2018.04.020

Google Scholar

[11] D.P. Xue, Z.Y. Zhang, Au-sensitized WO3 nanoparticles synthesized and their enhanced acetone sensing properties, Funct. Mater. Lett., 11 (2018).

DOI: 10.1142/s1793604718500716

Google Scholar

[12] H. Liu, H.L. Zhou, H.D. Li, X.T. Liu, C.J. Ren, Y.C. Liu, W.J. Li, M. Zhang, Fabrication of Bi2S3@Bi2WO6/WO3 ternary photocatalyst with enhanced photocatalytic performance: synergistic effect of Z-scheme/traditional heterojunction and oxygen vacancy, J. Taiwan Inst. Chem. Eng., 95 (2019) 94-102.

DOI: 10.1016/j.jtice.2018.10.003

Google Scholar

[13] Q.W. Cao, Y.F. Zheng, X.C. Song, Enhanced visible-light-driven photocatalytic degradation of RhB by AgIO3/WO3 composites, J. Taiwan Inst. Chem. Eng., 70 (2017) 359-365.

DOI: 10.1016/j.jtice.2016.10.030

Google Scholar

[14] P. Wang, L. Yang, B. Dai, Z. Yang, S. Guo, J. Zhu, Nanoplate-like tungsten trioxide (hydrate) films prepared by crystal-seed-assisted hydrothermal reaction, Int. J. Mod. Phys. B, 31 (2017).

DOI: 10.1142/s0217979217440726

Google Scholar

[15] Y.Z. Xu, W. Zeng, Y.Q. Li, A novel seawave-like hierarchical WO3 nanocomposite and its ammonia gas properties, Mater. Lett., 248 (2019) 86-88.

DOI: 10.1016/j.matlet.2019.04.010

Google Scholar

[16] Y.Q. Rong, X.F. Yang, W.D. Zhang, Y.X. Yu, Porous ultrathin WO3 nanoflake arrays as highly efficient photoanode for water splitting, Mater. Lett., 246 (2019) 161-164.

DOI: 10.1016/j.matlet.2019.03.044

Google Scholar

[17] H.C. Ji, W. Zeng, Y.Z. Xu, Y.Q. Li, Nanosheet-assembled hierarchical WO3 flower-like nanostructures: Hydrothermal synthesis and NH3 sensing properties, Mater. Lett., 250 (2019) 155-158.

DOI: 10.1016/j.matlet.2019.05.023

Google Scholar

[18] J. Yang, J.D. Xiao, H.B. Cao, Z. Guo, J. Rabeah, A. Bruckner, Y.B. Xie, The role of ozone and influence of band structure in WO3 photocatalysis and ozone integrated process for pharmaceutical wastewater treatment, J. Hazard. Mater., 360 (2018) 481-489.

DOI: 10.1016/j.jhazmat.2018.08.033

Google Scholar

[19] M.B. Tahir, G. Nabi, M. Rafique, N.R. Khalid, Nanostructured-based WO3 photocatalysts: recent development, activity enhancement, perspectives and applications for wastewater treatment, International Journal of Environmental Science and Technology, 14 (2017) 2519-2542.

DOI: 10.1007/s13762-017-1394-z

Google Scholar

[20] P.Y. Dong, G.H. Hou, X.U. Xi, R. Shao, F. Dong, WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications, Environ. Sci.-Nano, 4 (2017) 539-557.

DOI: 10.1039/c6en00478d

Google Scholar

[21] J.A. Darr, J.Y. Zhang, N.M. Makwana, X.L. Weng, Continuous Hydrothermal Synthesis of Inorganic Nanoparticles: Applications and Future Directions, Chem. Rev., 117 (2017) 11125-11238.

DOI: 10.1021/acs.chemrev.6b00417

Google Scholar

[22] W.D. Shi, S.Y. Song, H.J. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures, Chem. Soc. Rev., 42 (2013) 5714-5743.

DOI: 10.1039/c3cs60012b

Google Scholar

[23] B.L. Cushing, V.L. Kolesnichenko, C.J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles, Chem. Rev., 104 (2004) 3893-3946.

DOI: 10.1021/cr030027b

Google Scholar

[24] M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and future, J. Mater. Sci., 43 (2008) 2085-2103.

DOI: 10.1007/s10853-007-1853-x

Google Scholar

[25] D. Ariyanti, J.Z. Dong, W. Gao, Hierarchical structures of coated TiO2 nanoribbons with photodegradation and sedimentation properties, Int. J. Mod. Phys. B, 33 (2019)1940022.

DOI: 10.1142/s0217979219400228

Google Scholar

[26] D.M. Zhang, L.J. Pan, C.W. Li, L.C. Xia, Y.P. Hu, Y.Z. Bin, W. Gao, Fabrication of flower-like TiO2 on Bucky paper with enhanced photocatalytic activity, Int. J. Mod. Phys. B, 33 (2019).

DOI: 10.1142/s0217979219500176

Google Scholar

[27] B. Ahmed, S. Kumar, A.K. Ojha, P. Donfack, A. Materny, Facile and controlled synthesis of aligned WO3 nanorods and nanosheets as an efficient photocatalyst material, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 175 (2017) 250-261.

DOI: 10.1016/j.saa.2016.11.044

Google Scholar