[1]
Yella A, Lee H W, Tsao H N, et al. Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011, 334(6056): 629-634.
DOI: 10.1126/science.1209688
Google Scholar
[2]
Zhou H, Wu L, Gao Y, et al. Dye-sensitized solar cells using 20 natural dyes as sensitizers[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 219(2-3): 188-194.
DOI: 10.1016/j.jphotochem.2011.02.008
Google Scholar
[3]
Ma T, Yun S. Dye-sensitized solar cells: theoretical basis to technical application[M]. Chemical Industry Press, (2013).
Google Scholar
[4]
Wongcharee K, Meeyoo V, Chavadej S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers[J]. Solar Energy Materials and Solar Cells, 2007, 91(7): 566-571.
DOI: 10.1016/j.solmat.2006.11.005
Google Scholar
[5]
Ludin N A, Mahmoud A M A A, Mohamad A B, et al. Review on the development of natural dye photosensitizer for dye-sensitized solar cells[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 386-396.
DOI: 10.1016/j.rser.2013.12.001
Google Scholar
[6]
Hwang I, Yong K. Counter Electrodes for Quantum‐Dot‐Sensitized Solar Cells[J]. ChemElectroChem, 2015, 2(5): 634-653.
DOI: 10.1002/celc.201402405
Google Scholar
[7]
Du Z, Pan Z, Fabregat-Santiago F, et al. Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%[J]. The journal of physical chemistry letters, 2016, 7(16): 3103-3111.
DOI: 10.1021/acs.jpclett.6b01356
Google Scholar
[8]
Jiao S, Du J, Du Z, et al. Nitrogen-Doped Mesoporous Carbons as Counter Electrodes in Quantum Dot Sensitized Solar Cells with a Conversion Efficiency Exceeding 12[J]. Journal of Physical Chemistry Letters, 2017, 8(3):559-564.
DOI: 10.1021/acs.jpclett.6b02864
Google Scholar
[9]
Deng S, Deng Z, Fan Y, et al. Isolation and purification of three flavonoid glycosides from the leaves of Nelumbo nucifera (Lotus) by high-speed counter-current chromatography[J]. Journal of chromatography B, 2009, 877(24): 2487-2492.
DOI: 10.1016/j.jchromb.2009.06.026
Google Scholar
[10]
Xu S, Liu C, Wiezorek J. 20 renewable biowastes derived carbon materials as green counter electrodes for dye-sensitized solar cells[J]. Materials Chemistry and Physics, 2018, 204: 294-304.
DOI: 10.1016/j.matchemphys.2017.10.056
Google Scholar
[11]
Lim A, Kumara N, Tan A L, et al. Potential natural sensitizers extracted from the skin of Canarium odontophyllum fruits for dye-sensitized solar cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 138: 596-602.
DOI: 10.1016/j.saa.2014.11.102
Google Scholar
[12]
Narayan M, Raturi A. Investigation of some common Fijian flower dyes as photosensi-tizers for dye sensitized solar cellsabstract[J]. Applied Solar Energy, 2011, 47(2): 112.
DOI: 10.3103/s0003701x11020149
Google Scholar
[13]
Hao S, Wu J, Huang Y, et al. Natural dyes as photosensitizers for dye-sensitized solar cell[J]. Solar energy, 2006, 80(2): 209-214.
DOI: 10.1016/j.solener.2005.05.009
Google Scholar
[14]
Narayan M R. Dye sensitized solar cells based on natural photosensitizers[J]. Renewable and Sustainable Energy Reviews, 2012, 16(1): 208-215.
DOI: 10.1016/j.rser.2011.07.148
Google Scholar
[15]
Wongcharee K, Meeyoo V, Chavadej S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers[J]. Solar Energy Materials and Solar Cells, 2007, 91(7): 566-571.
DOI: 10.1016/j.solmat.2006.11.005
Google Scholar
[16]
Polo A S, Itokazu M K, Iha N Y M. Metal complex sensitizers in dye-sensitized solar cells[J]. Coordination Chemistry Reviews, 2004, 248(13-14): 1343-1361.
DOI: 10.1016/j.ccr.2004.04.013
Google Scholar
[17]
Hemalatha K V, Karthick S N, Raj C J, et al. Performance of Kerria japonica and Rosa chinensis flower dyes as sensitizers for dye-sensitized solar cells[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 96: 305-309.
DOI: 10.1016/j.saa.2012.05.027
Google Scholar
[18]
Qu S, Wang X, Lu Q, et al. A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots[J]. Angewandte Chemie International Edition, 2012, 51(49):12215-12218.
DOI: 10.1002/anie.201206791
Google Scholar
[19]
Shereema R M, Sankar V, Raghu K G, et al. One step green synthesis of carbon quantum dots and its application towards the bioelectroanalytical and biolabeling studies[J]. Electrochimica Acta, 2015, 182: 588-595.
DOI: 10.1016/j.electacta.2015.09.145
Google Scholar
[20]
Jiang Q W, Li G R, Wang F, et al. Highly ordered mesoporous carbon arrays from natural wood materials as counter electrode for dye-sensitized solar cells[J]. Electrochemistry Communications, 2010, 12(7):924-927.
DOI: 10.1016/j.elecom.2010.04.022
Google Scholar
[21]
Chou C S, Chen C Y, Lin S H, et al. Preparation of TiO2 /bamboo-charcoal-powder composite particles and their applications in dye-sensitized solar cells[J]. Advanced Powder Technology, 2015, 26(3):711-717.
DOI: 10.1016/j.apt.2014.12.013
Google Scholar
[22]
Biochar production from date palm waste: Charring temperature induced changes in composition and surface chemistry[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115:392-400.
DOI: 10.1016/j.jaap.2015.08.016
Google Scholar
[23]
Moisés Frías, Savastano H, Villar E, et al. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes[J]. Cement and Concrete Composites, 2012, 34(9):1019-1023.
DOI: 10.1016/j.cemconcomp.2012.05.005
Google Scholar
[24]
Xu S, Luo Y, Zhong W. Investigation of catalytic activity of glassy carbon with controlled crystallinity for counter electrode in dye-sensitized solar cells[J]. Solar Energy, 2011, 85(11):2826-2832.
DOI: 10.1016/j.solener.2011.08.014
Google Scholar