[1]
F. DiSalvo, Thermoelectric cooling and power generation, Science, 285 (1999) 703-706.
DOI: 10.1126/science.285.5428.703
Google Scholar
[2]
L. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science. 321 (2008) 1457-1461.
DOI: 10.1126/science.1158899
Google Scholar
[3]
G. Snyder, E. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.
Google Scholar
[4]
X. Shi, L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials, Int. Mater. Rev. 61 (2016) 1-37.
Google Scholar
[5]
G. Tan, L. Zhao, M. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116 (2016) 12123-12149.
DOI: 10.1021/acs.chemrev.6b00255
Google Scholar
[6]
T. Zhu, Compromise and synergy in high-efficiency thermoelectric materials, Adv. Mater. 29 (2017) 1605884.
Google Scholar
[7]
H. Zhu, R. He, Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency, Nat. Commun. 9 (2018) 2497.
Google Scholar
[8]
A. Ioffe, Semiconductor thermoelements and thermoelectric cooling, Phys. Today. 12 (1957) 42-57.
Google Scholar
[9]
R. Basu, S. Bhattacharya, Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys, J. Mater. Chem. A. 2 (2014) 6922-6930.
DOI: 10.1039/c3ta14259k
Google Scholar
[10]
K. Hsu, S. Loo, F. Guo, Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit, Science. 303 (2004) 818-821.
DOI: 10.1002/chin.200417240
Google Scholar
[11]
C. Chang, M. Wu, D. He, 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals, Science. 360 (2018) 778-783.
DOI: 10.1126/science.aaq1479
Google Scholar
[12]
J. Snyder, E. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.
Google Scholar
[13]
G. Chen, M. Dresselhaus, Recent development in thermoelectric materials, Int. Mater. Rev. 48 (2003) 45-66.
Google Scholar
[14]
J. Sootsman, D. Chung, M. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Edit. 48 (2009) 8616-8639.
DOI: 10.1002/anie.200900598
Google Scholar
[15]
M. Rui, G. Liu, Thermoelectric properties of S and Te-doped Cu2SnSe3 prepared by combustion synthesis, J. Asian. Earth. Sci. 6 (2018) 13-19.
Google Scholar
[16]
C. Yang, F. Huang, New stannite-like p-type thermoelectric material Cu3SbSe4, J Phys. D. Appl. Phys. 44 (2011) 295404.
DOI: 10.1088/0022-3727/44/29/295404
Google Scholar
[17]
H. Chen, C. Yang, Thermoelectric properties of CuInTe2/graphene composites, Crystengcomm. 15 (2013) 6648-6651.
DOI: 10.1039/c3ce40334c
Google Scholar
[18]
D. Zhao, D. Wu, Enhanced Thermoelectric Properties of Cu3SbSe4 Compounds via Gallium Doping, Energies. 10 (2017) 1524.
DOI: 10.3390/en10101524
Google Scholar
[19]
E. Skoug, J. Cain, Improved Thermoelectric Performance in Cu-Based Ternary Chalcogenides Using S for Se Substitution, J. Electron. Mater. 41 (2012) 1232-1236.
DOI: 10.1007/s11664-012-1969-x
Google Scholar
[20]
J. Ning, D. Zhao, Synthesis and Thermoelectric Properties of ZnO/Cu2SnSe3 Composites, Mater. Sci. Forum. 898 (2017) 1661-1668.
Google Scholar
[21]
R. Liu, L. Xi, H. Liu, Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure, Chem. Commun. 48 (2012) 3818-3820.
DOI: 10.1039/c2cc30318c
Google Scholar
[22]
A. Yusufu, K. Kurosaki, Thermoelectric properties of Ag1-xGaTe2 with chalcopyrite structure, Appl. Phys. Lett. 99 (2011) 061902.
Google Scholar
[23]
K. Kurosaki, ChemInform Abstract: Chalcopyrite CuGaTe2: A high-efficiency bulk thermoelectric material, J. Cheminform. 43 (2012) 3622-3626.
DOI: 10.1002/chin.201242009
Google Scholar
[24]
T. Wei, H. Wang, Z. Gibbs, Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap, J. Mater. Chem. A. 2 (2014) 13527-13533.
DOI: 10.1039/c4ta01957a
Google Scholar
[25]
D. Li, R. Li, Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1-xSnxSe4-ySy with a high thermoelectric performance, CrystEngComm. 15 (2013) 7166-7170.
DOI: 10.1039/c3ce40956b
Google Scholar
[26]
K. Biswas, J. He, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature. 489 (2012) 414-418.
DOI: 10.1038/nature11439
Google Scholar
[27]
D. Zhang, J. Yang, Simultaneous optimization of the overall thermoelectric properties of Cu3SbSe4 by band engineering and phonon blocking, J. Alloy. Compd. 24 (2017) 597-602.
DOI: 10.1016/j.jallcom.2017.06.347
Google Scholar
[28]
X. Li, D. Li, Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures, J. Alloy. Comp. 561 (2013) 105-108.
DOI: 10.1016/j.jallcom.2013.01.131
Google Scholar
[29]
H. Goldsmid, J. Sharp, Estimation of the thermal band gap of a semiconductor from Seebeck measurements, J. Elec. Mater. 28 (1999) 869-872.
DOI: 10.1007/s11664-999-0211-y
Google Scholar
[30]
X. Tan, H. Shao, Band engineering and improved thermoelectric performance in M-doped SnTe (M=Mg, Mn, Cd, and Hg), Phys. Chem. Chem. Phys. 18 (2016) 7141-7147.
DOI: 10.1039/c5cp07620j
Google Scholar