Effects of Co Doping on the Thermoelectric Properties of Cu3SbSe4 at Moderate Temperature

Article Preview

Abstract:

Cu3SbSe4-based thermoelectric materials are a class of thermoelectric materials with diamond-like structure which exhibit high thermoelectric properties at moderate temperature region and have broad research prospects. In this study, the p-type Co-doped Cu3-xCoxSbSe4 (x=0-0.015) thermoelectric materials were fabricated by melting-annealing-ball milling-hot pressing process to investigate the effects of Co doping on the thermoelectric properties of Cu3SbSe4. It is found that the average power factor of Cu2.995Co0.005SbSe4 was increased by 30% compared with the pure sample, indicating that Co doping had a great effect on the electrical properties of Cu3SbSe4. The energy gap of ternary p-type semiconductor Cu3SbSe4 was around 0.27eV. As the Co content increasing, the lattice distortion enhanced the phonon scattering, which led to the decrease in lattice thermal conductivity. The maximum thermoelectric figure of merit, ZTmax, reached 0.46 at 600K for the Cu2.995Co0.005SbSe4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

899-905

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. DiSalvo, Thermoelectric cooling and power generation, Science, 285 (1999) 703-706.

DOI: 10.1126/science.285.5428.703

Google Scholar

[2] L. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science. 321 (2008) 1457-1461.

DOI: 10.1126/science.1158899

Google Scholar

[3] G. Snyder, E. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.

Google Scholar

[4] X. Shi, L. Chen, C. Uher, Recent advances in high-performance bulk thermoelectric materials, Int. Mater. Rev. 61 (2016) 1-37.

Google Scholar

[5] G. Tan, L. Zhao, M. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116 (2016) 12123-12149.

DOI: 10.1021/acs.chemrev.6b00255

Google Scholar

[6] T. Zhu, Compromise and synergy in high-efficiency thermoelectric materials, Adv. Mater. 29 (2017) 1605884.

Google Scholar

[7] H. Zhu, R. He, Discovery of ZrCoBi based half Heuslers with high thermoelectric conversion efficiency, Nat. Commun. 9 (2018) 2497.

Google Scholar

[8] A. Ioffe, Semiconductor thermoelements and thermoelectric cooling, Phys. Today. 12 (1957) 42-57.

Google Scholar

[9] R. Basu, S. Bhattacharya, Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys, J. Mater. Chem. A. 2 (2014) 6922-6930.

DOI: 10.1039/c3ta14259k

Google Scholar

[10] K. Hsu, S. Loo, F. Guo, Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit, Science. 303 (2004) 818-821.

DOI: 10.1002/chin.200417240

Google Scholar

[11] C. Chang, M. Wu, D. He, 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals, Science. 360 (2018) 778-783.

DOI: 10.1126/science.aaq1479

Google Scholar

[12] J. Snyder, E. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.

Google Scholar

[13] G. Chen, M. Dresselhaus, Recent development in thermoelectric materials, Int. Mater. Rev. 48 (2003) 45-66.

Google Scholar

[14] J. Sootsman, D. Chung, M. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Edit. 48 (2009) 8616-8639.

DOI: 10.1002/anie.200900598

Google Scholar

[15] M. Rui, G. Liu, Thermoelectric properties of S and Te-doped Cu2SnSe3 prepared by combustion synthesis, J. Asian. Earth. Sci. 6 (2018) 13-19.

Google Scholar

[16] C. Yang, F. Huang, New stannite-like p-type thermoelectric material Cu3SbSe4, J Phys. D. Appl. Phys. 44 (2011) 295404.

DOI: 10.1088/0022-3727/44/29/295404

Google Scholar

[17] H. Chen, C. Yang, Thermoelectric properties of CuInTe2/graphene composites, Crystengcomm. 15 (2013) 6648-6651.

DOI: 10.1039/c3ce40334c

Google Scholar

[18] D. Zhao, D. Wu, Enhanced Thermoelectric Properties of Cu3SbSe4 Compounds via Gallium Doping, Energies. 10 (2017) 1524.

DOI: 10.3390/en10101524

Google Scholar

[19] E. Skoug, J. Cain, Improved Thermoelectric Performance in Cu-Based Ternary Chalcogenides Using S for Se Substitution, J. Electron. Mater. 41 (2012) 1232-1236.

DOI: 10.1007/s11664-012-1969-x

Google Scholar

[20] J. Ning, D. Zhao, Synthesis and Thermoelectric Properties of ZnO/Cu2SnSe3 Composites, Mater. Sci. Forum. 898 (2017) 1661-1668.

Google Scholar

[21] R. Liu, L. Xi, H. Liu, Ternary compound CuInTe2: a promising thermoelectric material with diamond-like structure, Chem. Commun. 48 (2012) 3818-3820.

DOI: 10.1039/c2cc30318c

Google Scholar

[22] A. Yusufu, K. Kurosaki, Thermoelectric properties of Ag1-xGaTe2 with chalcopyrite structure, Appl. Phys. Lett. 99 (2011) 061902.

Google Scholar

[23] K. Kurosaki, ChemInform Abstract: Chalcopyrite CuGaTe2: A high-efficiency bulk thermoelectric material, J. Cheminform. 43 (2012) 3622-3626.

DOI: 10.1002/chin.201242009

Google Scholar

[24] T. Wei, H. Wang, Z. Gibbs, Thermoelectric properties of Sn-doped p-type Cu3SbSe4: a compound with large effective mass and small band gap, J. Mater. Chem. A. 2 (2014) 13527-13533.

DOI: 10.1039/c4ta01957a

Google Scholar

[25] D. Li, R. Li, Co-precipitation synthesis of Sn and/or S doped nanostructured Cu3Sb1-xSnxSe4-ySy with a high thermoelectric performance, CrystEngComm. 15 (2013) 7166-7170.

DOI: 10.1039/c3ce40956b

Google Scholar

[26] K. Biswas, J. He, High-performance bulk thermoelectrics with all-scale hierarchical architectures, Nature. 489 (2012) 414-418.

DOI: 10.1038/nature11439

Google Scholar

[27] D. Zhang, J. Yang, Simultaneous optimization of the overall thermoelectric properties of Cu3SbSe4 by band engineering and phonon blocking, J. Alloy. Compd. 24 (2017) 597-602.

DOI: 10.1016/j.jallcom.2017.06.347

Google Scholar

[28] X. Li, D. Li, Effects of bismuth doping on the thermoelectric properties of Cu3SbSe4 at moderate temperatures, J. Alloy. Comp. 561 (2013) 105-108.

DOI: 10.1016/j.jallcom.2013.01.131

Google Scholar

[29] H. Goldsmid, J. Sharp, Estimation of the thermal band gap of a semiconductor from Seebeck measurements, J. Elec. Mater. 28 (1999) 869-872.

DOI: 10.1007/s11664-999-0211-y

Google Scholar

[30] X. Tan, H. Shao, Band engineering and improved thermoelectric performance in M-doped SnTe (M=Mg, Mn, Cd, and Hg), Phys. Chem. Chem. Phys. 18 (2016) 7141-7147.

DOI: 10.1039/c5cp07620j

Google Scholar