[1]
A.G. Hanssen, O.S. Hopperstad, M. Langseth, Design of aluminium foam-filled crash boxes of square and circular cross-sections, Int. J.Crashworthiness. 6 (2001) 177-188.
DOI: 10.1533/cras.2001.0171
Google Scholar
[2]
I. Duarte, L. Krstulović-Opara, M. Vesenjak, Characterisation of aluminium alloy tubes filled with aluminium alloy integral-skin foam under axial compressive loads, Compos. Struct. 121 (2015) 154-162.
DOI: 10.1016/j.compstruct.2014.11.003
Google Scholar
[3]
Z. Li, R. Chen, F. Lu, Comparative analysis of crashworthiness of empty and foam-filled thin-walled tubes, Thin-Walled Struct. 124 (2018) 343-349.
DOI: 10.1016/j.tws.2017.12.017
Google Scholar
[4]
D.K. Rajak, N.N. Mahajan, E. Linul, Crashworthiness performance and microstructural characteristics of foam-filled thin-walled tubes under diverse strain rate, J. AlloysCompd. (2018) 675-689.
DOI: 10.1016/j.jallcom.2018.10.160
Google Scholar
[5]
N. Movahedi, E. Linul, Quasi-static compressive behavior of the ex-situ aluminum-alloy foam-filled tubes under elevated temperature conditions, Mater. Lett. 206 (2017) 182-184.
DOI: 10.1016/j.matlet.2017.07.018
Google Scholar
[6]
E. Linul, N. Movahedi, L. Marsavina, The temperature effect on the axial quasi-static compressive behavior of ex-situ aluminum foam-filled tubes, Compos. Struct. 180 (2017) 709-722.
DOI: 10.1016/j.compstruct.2017.08.034
Google Scholar
[7]
M. Taherishargh, M. Vesenjak, I.V. Belova, L. Krstulović-Opara, G.E. Murch, T. Fiedler, In situ manufacturing and mechanical properties of syntactic foam filled tubes, Mater. Des. 99 (2016) 356-368.
DOI: 10.1016/j.matdes.2016.03.077
Google Scholar
[8]
I. Duarte, M. Vesenjak, L. Krstulović-Opara, Z. Ren, Static and dynamic axial crush performance of in-situ foam-filled tubes, Compos. Struct. 124 (2015) 128-139.
DOI: 10.1016/j.compstruct.2015.01.014
Google Scholar
[9]
I. Duarte, M. Vesenjak, L. Krstulović-Opara, I. Anžel, J.M.F. Ferreira, Manufacturing and bending behaviour of in situ foam-filled aluminium alloy tubes, Mater. Des. 66 (2015) 532-544.
DOI: 10.1016/j.matdes.2014.04.082
Google Scholar
[10]
I. Duarte, L. Krstulović-Opara, M. Vesenjak, Axial crush behaviour of the aluminium alloy in-situ foam filled tubes with very low wall thickness, Compos. Struct. 192 (2018) 184-192.
DOI: 10.1016/j.compstruct.2018.02.094
Google Scholar
[11]
O. Al-Ketan, R. Rowshan, R.K. Abu Al-Rub, Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials, Addit. Manuf. 19 (2018) 167-183.
DOI: 10.1016/j.addma.2017.12.006
Google Scholar
[12]
P. Köhnen, C. Haase, J. Bültmann, S. Ziegler, J.H. Schleifenbaum, W. Bleck, Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel, Mater. Des. 145 (2018) 205-217.
DOI: 10.1016/j.matdes.2018.02.062
Google Scholar
[13]
E. Cetin, C. Baykasoğlu, Energy absorption of thin-walled tubes enhanced by lattice structures, Inter. J. Mech. Sci. 157-158 (2019) 471-484.
DOI: 10.1016/j.ijmecsci.2019.04.049
Google Scholar
[14]
H. Wang, Y. Fu, M. Su, H. Hao, Effect of structure design on compressive properties and energy absorption behavior of ordered porous aluminum prepared by rapid casting, Mater. Des. 167 (2019) 107631.
DOI: 10.1016/j.matdes.2019.107631
Google Scholar
[15]
C. Zhang, Y. Fu, H. Wang, H. Hao, Multi-objective optimization of process parameters during low-pressure die casting of AZ91D magnesium alloy wheel castings, China Foundry. 15 (2018) 327-332.
DOI: 10.1007/s41230-018-8066-6
Google Scholar
[16]
H. Wang, Y. Fu, M. Su, H. Hao, A novel method of indirect rapid prototyping to fabricate the ordered porous aluminum with controllable dimension variation and their properties, J. Mater. Process. Technol. 266 (2019) 373-380.
DOI: 10.1016/j.jmatprotec.2018.11.017
Google Scholar