[1]
G. Zhao, W. Di, R. Wang, Development and potential application of advanced functional materials in the oil field, Materials Science Forum, 944 (2019) 637–642.
DOI: 10.4028/www.scientific.net/msf.944.637
Google Scholar
[2]
M. Wang, X. Guang, L. Kong, The prospects of applying shape memory polymer in petroleum engineering, Petroleum Drilling Techniques, 46 (5) (2018) 14–21.
Google Scholar
[3]
B. Lu, S. Ding, L. He, W. Pang, Achievement of key drilling & completion technologies for the efficient development of low permeability oil and gas reservoirs in China, Petroleum Drilling Techniques, 47 (1) (2019) 1–11.
Google Scholar
[4]
A.S. Apaleke, A. Al-Majed, M.E. Hossain, Drilling fluid: state of the art and future trend, SPE149555 (2012).
DOI: 10.2118/149555-ms
Google Scholar
[5]
O. Contreras, G. Hareland, M. Husein, Wellbore strengthening in sandstones by means of nanoparticle-based drilling fluids, SPE170263 (2014).
DOI: 10.2118/170263-ms
Google Scholar
[6]
F. Chen, J. Xiong, X. Kuang, F. Hou, Latest study of the application of nanotechnology in oil field, Applied Chemical Industry, 39 (8) (2010) 1227–1230.
Google Scholar
[7]
S. Zhu, J. Zhang, J. Shi, R. Zhao, M. Liu, Y. Shu, The prospect of application of nanometer material in oil exploitation, Advanced Materials Research, 490-495 (2012) 3802–3806.
DOI: 10.4028/www.scientific.net/amr.490-495.3802
Google Scholar
[8]
X. Bai, X. Pu, The performance of PMMA nano-latex in drilling fluids, Drilling Fluid & Completion Fluid, 27 (1) (2010) 8–10.
Google Scholar
[9]
M. Addington, D. Schodek, Smart Materials and Technologies, Elsevier, London, (2005).
Google Scholar
[10]
A. Taleghani, G. Li, M. Moayeri, The use of temperature-triggered polymers to seal cement voids and fractures in wells, SPE181384 (2016).
DOI: 10.2118/181384-ms
Google Scholar
[11]
L. Santos, A. Taleghani, G. Li, Smart expandable proppants to achieve sustainable hydraulic fracturing treatments, SPE181391 (2016).
DOI: 10.2118/181391-ms
Google Scholar
[12]
G. Osunjaye, T. Abdelfattah, Open hole control optimization using shape memory polymer conformable screen with inflow control application, SPE183947 (2017).
DOI: 10.2118/183947-ms
Google Scholar
[13]
H. Jonkers, Self healing concrete: a biological approach, in: S. Zwaag (Eds.), Self Healing Materials, Springer, Netherlands, 2007, p.195–204.
DOI: 10.1007/978-1-4020-6250-6_9
Google Scholar
[14]
J. Dick, W. DeWindt, B. DeGraef, H. Saveyn, P. VanderMeeren, N. DeBelie, W. Verstraete, Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species, Biodegradation, 17 (2006) 357–367.
DOI: 10.1007/s10532-005-9006-x
Google Scholar
[15]
B. DeGraef, W. DeWindt, J. Dick, W. Verstraete, N. DeBelie, Cleaning of concrete fouled by lichens with the aid of Thiobacilli, Materials and Structures, 38 (284) (2005) 875–882.
DOI: 10.1617/14254
Google Scholar
[16]
S. Anton, H. Sodano, A review of power harvesting using piezoelectric materials, Smart Materials and Structures, 16 (3) (2007) R1–R21.
DOI: 10.1088/0964-1726/16/3/r01
Google Scholar
[17]
A. Rajabi, M. Jaffe, T. Arinzeh, Piezoelectric materials for tissue regeneration: a review, Acta Biomaterialia, 24 (2015) 12–23.
DOI: 10.1016/j.actbio.2015.07.010
Google Scholar
[18]
M. Chorsi, E. Curry, H. Chorsi, R. Das, J. Baroody, P. Purohit, H. Ilies, T. Nguyen, Piezoelectric biomaterials for sensors and actuators, Advanced Materials, 31 (2019) 1–15.
DOI: 10.1002/adma.201802084
Google Scholar
[19]
Information on www.ricoh.com.
Google Scholar
[20]
H. Wei, X. Wan, Y. Liu, J. Leng, 4D printing of shape memory polymers: Research status and application prospects, SCIENTIA SINICA Technologica, 48 (1) (2018) 2–16.
DOI: 10.1360/n092017-00156
Google Scholar
[21]
J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape-memory polymers: Structure, mechanism, functionality, modeling and applications, Progress in Polymer Science, 37 (2012) 1720–1763.
DOI: 10.1016/j.progpolymsci.2012.06.001
Google Scholar
[22]
Q. Zhao, H. Qi, T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding, Progress in Polymer Science, 49-50 (2015) 79–120.
DOI: 10.1016/j.progpolymsci.2015.04.001
Google Scholar
[23]
A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science, 296 (2002) 1673–1676.
DOI: 10.1126/science.1066102
Google Scholar
[24]
S. Tibbits, 4D printing: Multi-material shape change, Architectural Design, 84 (2014) 116–121.
DOI: 10.1002/ad.1710
Google Scholar
[25]
J. Choi, O. Kwon, W. Jo, H. Lee, M. Moon, 4D printing technology: A review. 3D Printing and Additive Manufacturing, 2 (2015) 159–167.
DOI: 10.1089/3dp.2015.0039
Google Scholar
[26]
S. Tibbits, Printing products, 3D Printing and Additive Manufacturing, 3 (2016) 135.
DOI: 10.1089/3dp.2016.29005.sti
Google Scholar