Optimization of Cryogenic Carbon Dioxide Removal from CO2-CH4 System by Response Surface Methodology

Article Preview

Abstract:

The presence of high CO2 content in natural gas reservoirs is one of the significant threats to the environment. Cryogenic CO2 capture technology is amongst the emerging technologies used for natural gas purification before customer use. In this research work, the binary CO2-CH4 mixture having 75% CO2 content is studied. Aspen Hysys simulator with Peng Robinson property package is used for the prediction of phase equilibrium data for the binary mixture. The data obtained through the Aspen Hysys simulator is optimized for the S-V two-phase region for maximum CO2 capture. Response surface methodology is used for the optimization of the predicted data. Optimization of the pressure and temperature conditions is done to obtain maximum CH4 in the top stream and minimum CO2 with minimum energy requirement. In this research work, the pressure and temperature ranges selected from the predicted phase equilibrium data for the optimization are 1 to 20 bar and-65 to-150 °C respectively. At atmospheric pressure and-123.50 °C, the desirability value is maximum, which is 0.843. under these conditions, the CO2 and CH4 in the top product stream are 1070.72 Kg/hr and 152.04 Kg/hr respectively with an energy requirement of 2.087 GJ/hr.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-110

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.J. Jensen, Energy processes enabled by cryogenic Carbon capture,, Brigham Young University, (2015).

Google Scholar

[2] I. Statistics, Key world energy statistics,, Paris. International Energy Agency, (2014).

Google Scholar

[3] M. Babar, M. A. Bustam, A. Ali, A. S. Maulud, U. Shafiq, A. M. Shariff, et al., Efficient CO2 capture using NH2− MIL− 101/CA composite cryogenic packed bed column,, Cryogenics, (2019).

DOI: 10.1016/j.cryogenics.2019.06.001

Google Scholar

[4] U. Shafiq, A. M. Shariff, M. Babar, and A. Ali, A study on blowdown of pressurized vessel containing CO2/N2/H2S at cryogenic conditions,, in IOP Conference Series: Materials Science and Engineering, 2018, p.012077.

DOI: 10.1088/1757-899x/458/1/012077

Google Scholar

[5] Z.Y. Yeo, T.L. Chew, P.W. Zhu, A.R. Mohamed, and S.-P. Chai, Conventional processes and membrane technology for Carbon Dioxide removal from natural gas: a review,, Journal of Natural Gas Chemistry, vol. 21, pp.282-298, (2012).

DOI: 10.1016/s1003-9953(11)60366-6

Google Scholar

[6] M. Babar, M. Bustam, A. Ali, and A. Maulud, Identification and Quantification of CO2 Solidification in Cryogenic CO2 Capture from Natural Gas,, International Journal of Automotive and Mechanical Engineering, vol. 15, pp.5367-5367, (2018).

DOI: 10.15282/ijame.15.2.2018.16.0413

Google Scholar

[7] S.-P. Lee, N. Mellon, A. M. Shariff, and J.-M. Leveque, High-pressure CO 2-CH 4 selective adsorption on covalent organic polymer,, Journal of Natural Gas Science and Engineering, vol. 50, pp.139-146, (2018).

DOI: 10.1016/j.jngse.2017.11.024

Google Scholar

[8] M. Babar, M.A. Bustam, A. Ali, A.S. Maulud, U. Shafiq, A. Mukhtar, et al., Thermodynamic data for cryogenic Carbon Dioxide capture from natural gas: A review,, Cryogenics, (2019).

DOI: 10.1016/j.cryogenics.2019.07.004

Google Scholar

[9] B. L. A. Qasim, M. Babar, A. Ali, M. A. Bustam, A. M. Shariff, Optimization in Liquid-Vapor Region for Cryogenic based Separation Simulation of Natural Gas Components,, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, vol. 55, (2018).

Google Scholar

[10] G.-i. Kaminishi, Y. Arai, S. Saito, and S. Maeda, Vapor-liquid equilibria for binary and ternary systems containing Carbon Dioxide,, Journal of Chemical Engineering of Japan, vol. 1, pp.109-116, (1968).

DOI: 10.1252/jcej.1.109

Google Scholar

[11] J. Davalos, W. R. Anderson, R. E. Phelps, and A. J. Kidnay, Liquid-vapor equilibria at 250.00. deg. K for systems containing Methane, Ethane, and Carbon Dioxide,, Journal of Chemical and Engineering Data, vol. 21, pp.81-84, (1976).

DOI: 10.1021/je60068a030

Google Scholar

[12] K. Nagahama, H. Konishi, D. Hoshino, and M. Hirata, Binary vapor-liquid equilibria of Carbon Dioxide-light hydrocarbons at low temperature,, Journal of Chemical Engineering of Japan, vol. 7, pp.323-328, (1974).

DOI: 10.1252/jcej.7.323

Google Scholar

[13] A. Ali, K. Maqsood, N. Syahera, A. Shariff, and S. Ganguly, Energy minimization in cryogenic packed beds during purification of natural gas with high CO2 content,, Chemical Engineering & Technology, vol. 37, pp.1675-1685, (2014).

DOI: 10.1002/ceat.201400215

Google Scholar

[14] C. Song, Y. Kitamura, and S. Li, Optimization of a novel cryogenic CO2 capture process by response surface methodology (RSM),, Journal of the Taiwan Institute of Chemical Engineers, vol. 45, pp.1666-1676, (2014).

DOI: 10.1016/j.jtice.2013.12.009

Google Scholar

[15] M. Babar, M. Bustam, A. Maulud, and A. Ali, Optimization of cryogenic Carbon Dioxide capture from natural gas,, Materialwissenschaft und Werkstofftechnik, vol. 50, pp.248-253, (2019).

DOI: 10.1002/mawe.201800202

Google Scholar

[16] J. Davis, N. Rodewald, and F. Kurata, Solid‐liquid‐vapor phase behavior of the Methane‐Carbon Dioxide system,, AIChE Journal, vol. 8, pp.537-539, (1962).

DOI: 10.1002/aic.690080423

Google Scholar