[1]
E. Nouri, M. R. Mohammadi, & P. Lianos, Impact of preparation method of TiO2-RGO nano composite photo anodes on the performance of dye-sensitised solar cells, Electrochimica Acta, 219 (2016) 38-48.
DOI: 10.1016/j.electacta.2016.09.150
Google Scholar
[2]
R. Raja, M. Govindaraj, M. D. Antony, K. Krishnan, E. Velusamy, A. Sambandam, M. Subbaiah, V. W. Rayar, Effect of TiO2/reduced graphene oxide composite thin film as a blocking layer on the efficiency of dye-sensitized solar cells. Journal of Solid State Electrochemistry, 21(3) (2016) 891-903.
DOI: 10.1007/s10008-016-3437-7
Google Scholar
[3]
Jang YH, Xin X, Byun M et al, An unconventional route to high efficiency dye-sensitized solar cells via embedding graphitic thin films into TiO2 nanoparticles photoanode, Nano Lett 12 (2012) 479-485.
DOI: 10.1021/nl203901m
Google Scholar
[4]
M. Shanmugan, M.F. Baroughi, D. Galipeau, Effect of atomic layer deposited ultra thin HfO2 and Al2O3 interfacial layers on the performance of dye sensitized solar cells. Thin Solid Films, 518 (2010) 2678-2682.
DOI: 10.1016/j.tsf.2009.08.033
Google Scholar
[5]
X. Luan, L. Chen, J. Zhang, G. Qu, J. C. Flake, & Y. Wang, Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells. Electrochimica Acta, 111 (2013) 216-222.
DOI: 10.1016/j.electacta.2013.08.016
Google Scholar
[6]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A Firsov, Electric field effect in atomically thin carbpn films, Science 306 (2004) 666.
DOI: 10.1126/science.1102896
Google Scholar
[7]
K.S. Novoselov, A.K. Geim, S.V. Morosov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197.
DOI: 10.1038/nature04233
Google Scholar
[8]
F. W. Low, C. W. Lai, & S. B. Hamid, Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell, Journal of Materials Science: Materials in Electronics, 28(4) (2016) 3819-3836.
DOI: 10.1007/s10854-016-5993-0
Google Scholar
[9]
C. Huang, C. Li, G. Shi, Graphene based catalyst. Energy Environ. Sci 5(10), (2012) 8848-8868.
Google Scholar
[10]
B.F. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci Technol. 2(1) (2012) 54-75.
DOI: 10.1039/c1cy00361e
Google Scholar
[11]
U. Kanta, V. Thongpool, W. Sangkhun, N. Wongyao, & J. Wootthikanokkhan,Preparations, Characterizations, and a Comparative Study on Photovoltaic Performance of Two Different Types of Graphene/TiO2 Nanocomposites Photoelectrodes. Journal of Nanomaterials, 2017 (2017) 1-13.
DOI: 10.1155/2017/2758294
Google Scholar
[12]
R. Ramamoorthy, K. Karthika, A. M. Dayana, G. Maheswari, V. Eswaramoorthi, N. Pavithra, R. V. Williams, Reduced graphene oxide embedded titanium dioxide nanocomposite as novel photoanode material in natural dye-sensitized solar cells. Journal of Materials Science: Materials in Electronics, 28(18) (2017) 13678-13689.
DOI: 10.1007/s10854-017-7211-0
Google Scholar
[13]
S. K. Sahari, A. Baharin, M. Sawawi, M. Kashif, R. Kemat, & E. Jaafar, Sensitization of TiO2 Thin Film with Different Dye for Solar Cell Application, Journal of Telecommunications, Electronic and Computer Engineering (JTEC), 9(3-10) (2017) 49-52.
Google Scholar
[14]
L. Liu, Y. Zhang, B. Zhang, & Y. Feng, A detailed investigation on the performance of dye-sensitized solar cells based on reduced graphene-oxide doped TiO2 photo anode. J Mater Sci (2017) 8070-8083.
DOI: 10.1007/s10853-017-1014-9
Google Scholar
[15]
S. Z. Siddick, C. W. Lai, J. C. Juan, & S. B. Hamid, Reduced Graphene Oxide - Titania Nanocomposite Film for Improving Dye-Sensitized Solar Cell (DSSCs) Performance. Current Nanoscience, 13(5) (2017) 494 - 500.
DOI: 10.2174/1573413713666170519123159
Google Scholar