The Effect of Fiber Chemical Treatment on Chemical Resistance Behavior of Jute Polyethylene Composites for Storage Tank Application

Article Preview

Abstract:

The jute polyethylene composites were developed using the hot-press technique with different fiber weight ratios. Due to the hydrophilic nature of fiber, it exhibited poor interfacial interaction to hydrophobic polymer matrix. In order to enhance the interfacial interaction between fiber and polymer, the benzene diazonium salt (BDS), propionic anhydride (PA), and 3-isocyanatopropyl triethoxysilane (silane) treated jute were used for the manufacturing of composites in this study. The chemical resistance tests of prepared composites were performed in order to probe whether these are resistant to various chemicals such as: acids, alkalis, and solvents. The effect of chemical treatments of the composites have been investigated. It was observed that the fabricated composites were resistant to all chemicals except carbon tetrachloride. The treated jute composites showed higher chemical resistance than raw jute composite and silane treated jute composite yield the highest resistance which can be suggested for making the water and chemical storage tanks.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-55

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. George, M.S. Sreekala, S. Thomas, A review on interface modification and characterization of natural fiber reinforced plastic composites, Polym. Eng. Sci. 41 (2001) 1471-1485.

DOI: 10.1002/pen.10846

Google Scholar

[2] J.A. Khan, M.A. Khan, R. Islam, Effect of mercerization on mechanical, thermal and degradation characteristics of jute fabric-reinforced polypropylene composites, Fib. Polym. 13 (2012) 1300-1309.

DOI: 10.1007/s12221-012-1300-8

Google Scholar

[3] M.W. Dewan, M.K. Hossain, M. Hosur, S. Jeelani, Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process, J. Appl. Polym. Sci. 128 (2013) 4110-4123.

DOI: 10.1002/app.38641

Google Scholar

[4] A.K. Bledzki, S. Reihmane, J. Gassan, Properties and modification methods for vegetable fibers for natural fiber composites, J. Appl. Polym. Sci. 59 (1996) 1329-1336.

DOI: 10.1002/(sici)1097-4628(19960222)59:8<1329::aid-app17>3.0.co;2-0

Google Scholar

[5] X. Li, L.G. Tabil, S. Panigrahi, Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A Review, J. Polym. Environ. 15 (2007) 25-33.

DOI: 10.1007/s10924-006-0042-3

Google Scholar

[6] D.A. Kumar and A.L. Naidu, A study on different chemical treatments for natural fiber reinforced composites, Int. J. Mech. Product. Eng. Res. Develop. 8 (2018) 143-152.

Google Scholar

[7] H. Wang, H. Memon, E.A.M. Hassan, M.S. Miah, M.A. Ali, Effect of jute fiber modification on mechanical properties of jute fiber composite, Materials 12 (2019) 1-11.

DOI: 10.3390/ma12081226

Google Scholar

[8] P.K. Aggarwal, N. Raghu, A. Karmarkar, S. Chuahan, Jute-polypropylene composites using m-TMI-grafted-polypropylene as a coupling agent, Mater. Design 43 (2013) 112-117.

DOI: 10.1016/j.matdes.2012.06.026

Google Scholar

[9] J.A. Brydson, Plastic materials, 3rd edition, Newnes Butterworths, London, (1975).

Google Scholar

[10] L. Mohammed, M.N.M. Ansari, G. Pua, M. Jawaid, M.S. Islam, A review on natural fiber reinforced polymer composite and its applications, Int. J. Polym. Sci. 2015 (2015) 1-15.

DOI: 10.1155/2015/243947

Google Scholar

[11] E. Winkle, M.J. Cowling, S.A. Hashim, E.M. Smith, What can adhesives offer to Shipbuilding? J. Ship Product. 7 (1991) 137-152.

DOI: 10.5957/jsp.1991.7.3.137

Google Scholar

[12] R.F. Gibson, Principles of Composite Materials Mechanics, McGraw Hill, New York, (1994).

Google Scholar

[13] A.S. Singha and V.K. Thakur, Morphological, thermal and physicochemical characterization of surface modified pinus fibers, Int. J. Polym. Anal. Charact. 14 (2009) 271-289.

DOI: 10.1080/10236660802666160

Google Scholar

[14] F. Khan and S.R. Ahmad, Chemical modification and spectroscopic analysis of jute fiber, Polym. Degrad. Stab. 52 (1996) 335-340.

Google Scholar

[15] T.W. Frederick and W. Norman, Natural fibers plastics and composites, Kluwer Academic Publishers, New York, (2004).

Google Scholar

[16] M.M. Haque, M. Hasan, M.S. Islam, M.E. Ali, Physico-mechanical properties of chemically treated palm and coir fiber reinforced polypropylene composites, Biores. Technol. 100 (2009) 4903-4906.

DOI: 10.1016/j.biortech.2009.04.072

Google Scholar

[17] M.F. Hossen, S. Hamdan, M.R. Rahman, M.M. Rahman, F.K. Liew, J.C.H. Lai, Effect of fiber treatment and nanoclay on the tensile properties of jute fiber reinforced polyethylene-clay nanocomposites, Fib. Polym. 16 (2015) 479-485.

DOI: 10.1007/s12221-015-0479-x

Google Scholar

[18] M.A. Khan, M.M. Hassan and L.T. Drzal, Effect of 2-hydroxyethyl methacrylate (HEMA) on the mechanical and thermal properties of jute-polycarbonate composite, Compos. A: Appl. Sci. Manuf. 36 (2005) 71-81.

DOI: 10.1016/s1359-835x(04)00178-2

Google Scholar

[19] E. Sinha and S.K. Rout, Influence of fiber-surface treatment on structural, thermal and mechanical properties of jute, J. Mater. Sci. 43 (2008) 2590-2601.

DOI: 10.1007/s10853-008-2478-4

Google Scholar

[20] P. Ganan, R. Zulunga, A. Restrepo, J. Labidi, I. Mondragon, Plantain fiber bundles isolated from colombian agro-industrial restudies," Biores. Technol. 99 (2008) 486-491.

DOI: 10.1016/j.biortech.2007.01.012

Google Scholar

[21] D. Ray, B.K. Sarkar, A.K. Rana, N.R. Bose, Effect of alkali treated jute fibers on composite properties, Bull. Mater. Sci. 24 (2001) 129-135.

DOI: 10.1007/bf02710089

Google Scholar

[22] M.K. Hossain, M.W. Dewan, M. Hosur, S. Jeelani, Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites, Compos. B: Eng. 42 (2011) 1701-1707.

DOI: 10.1016/j.compositesb.2011.03.010

Google Scholar

[23] Y. Seki, Innovative multifunctional siloxane treatment of jute fiber surface and its effect on the mechanical properties of jute/thermoset composites, Mater. Sci. Eng. A 508 (2009) 247-252.

DOI: 10.1016/j.msea.2009.01.043

Google Scholar

[24] L.Y. Mwaikambo and M.P. Ansell, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, J Appl. Polym. Sci. 84 (2002) 2222-2234.

DOI: 10.1002/app.10460

Google Scholar

[25] M.F. Hossen, S. Hamdan, M.R. Rahman, M.S. Islam et al., Effect of clay content on the morphological, thermo-mechanical and chemical resistance properties of propionic anhydride treated jute fiber/polyethylene/nanoclay nanocomposites, Measurement 90 (2016) 404-411.

DOI: 10.1016/j.measurement.2016.05.006

Google Scholar

[26] M.F. Hossen, S. Hamdan, M.R. Rahman, Improved mechanical properties of silane treated jute/polyethylene/clay nanocomposites, Malays. Appl. Biol. 47 (2018) 209-215.

Google Scholar

[27] K. John and S.V. Naidu, Chemical resistance of sisal/glass reinforced unsaturated polyester hybrid composites, J. Reinf. Plast. Compos. 26 (2007) 373-376.

DOI: 10.1177/0731684406072524

Google Scholar

[28] M. Jawaid, H.P.S. Abdul Khalil, A.A. Bakar, P.N. Khanam, Chemical resistance, void content and tensile properties of oil palm/jute fiber reinforced polymer hybrid composites, Mater. Design. 32 (2011) 1014-1019.

DOI: 10.1016/j.matdes.2010.07.033

Google Scholar

[29] Y. Indraja, G.S. Kumar, H.R. Rao, Study of mechanical and chemical properties of biodegradable fibers before and after alkali treatment, J. Inform. Eng. Appl. 4 (2014) 1-5.

Google Scholar