Tripropyl Chitosan Iodide-Based Gel Polymer Electrolyte as Quasi Solid-State Dye Sensitized Solar Cells

Article Preview

Abstract:

Electrolyte as one of the major components in dye sensitized solar cells (DSSCs) plays an important role in dye regeneration and as the inner charge carrier transport between electrodes. Gel polymer electrolyte is a potential alternative to liquid electrolytes which suffer of leakage and solvent evaporation. In this present research, functionalization of chitosan by the quaternization reaction of chitosan with iodopropane forming tripropyl chitosan iodide is proposed for the preparation of gel polymer electrolyte. Tripropyl chitosan iodide was characterized by nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Four different polymer electrolytes were tested at different compositions in presence of iodide/triiodide redox salt and imidazolium ionic liquid in DSSCs configurations. The results show that the gel polymer electrolyte containing the tripropyl chitosan iodide in presence of 1-propyl-3-methylimidazolium iodide ionic liquid showed better performance with power conversion efficiency of 0.415% as compared to the gel polymer electrolyte film without ionic liquid with power conversion efficiency of 0.075%. The results shown the synergistic effects of the polycationic tripropyl chitosan iodide with the ionic liquid 1-propyl-3-methylimidazolium iodide on the photovoltaic performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-76

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O'regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 353(6346), 737.

DOI: 10.1038/353737a0

Google Scholar

[2] Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical reviews, 110(11), 6595-6663.

DOI: 10.1021/cr900356p

Google Scholar

[3] Wang, P., Zakeeruddin, S. M., Moser, J. E., & Grätzel, M. (2003). A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells. The Journal of Physical Chemistry B, 107(48), 13280-13285.

DOI: 10.1021/jp0355399

Google Scholar

[4] Ye, M.D., Wen, X.R., Wang, M.Y., Locozzia, J., Zhang, N., Lin, C.J. & Lin, Z.Q. (2014). Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materialstoday, 18(3),155-162.

DOI: 10.1016/j.mattod.2014.09.001

Google Scholar

[5] Wang, P., Zakeeruddin, S. M., Moser, J. E., Humphry-Baker, R., & Grätzel, M. (2004). A solvent-free, SeCN-/(SeCN)3-based ionic liq-uid electrolyte for high-efficiency dye-sensitized nanocrystalline so-lar cells. Journal of the American Chemical Society, 126(23), 7164-7165.

DOI: 10.1021/ja048472r

Google Scholar

[6] Su'ait, M. S., Rahman, M. Y. A., & Ahmad, A. (2015). Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Solar En-ergy, 115, 452-470.

DOI: 10.1016/j.solener.2015.02.043

Google Scholar

[7] Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., & Luo, G. (2015). Electrolytes in dye-sensitized solar cells. Chemical reviews, 115(5), 2136-2173.

DOI: 10.1021/cr400675m

Google Scholar

[8] Shi, Y., Zhan, C., Wang, L., Ma, B., Gao, R., Zhu, Y., & Qiu, Y. (2009). The electrically conductive function of high-molecular weight poly (ethylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells. Physical chemistry chemical physics, 11(21), 4230-4235.

DOI: 10.1039/b901003c

Google Scholar

[9] Wu, J.H., Lan, Z., Hao, S.C., Li, P.J., Lin, J.M., Huang, M.L., Fang, L.Q. and Huang, Y.F. (2008). Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry. 80(11), 2241-2258.

DOI: 10.1351/pac200880112241

Google Scholar

[10] Kadir, M.F.Z., Majid, S.R. & Arof, A.K. (2010). Plasticized chitosan–PVA blend polymer electrolyte based proton battery. Electro-chimica Acta. 55(4), 1475-1482.

DOI: 10.1016/j.electacta.2009.05.011

Google Scholar

[11] Riva, R., Ragelle, H., Rieux, A.D., Duhem, N., Jerome, C. and Preat, V. (2011). Chitosan and chitosan derivatives in drug delivery and tissue engineering. Springer. 244, 19-14.

DOI: 10.1007/12_2011_137

Google Scholar

[12] Xiong, Y.B., Wang, H., Wu, C.Y. & Wang, R.M. (2011). Preparation and characterization of conductive chitosan–ionic liquid composite membranes. Polymers for Advance Technologies. 23(11), 1429-1434.

DOI: 10.1002/pat.2061

Google Scholar

[13] Mourya, V.K. & Inamdar, N. (2009). Trimethyl chitosan and its applications in drug delivery. Journal of Materials Science. 20:1057.

DOI: 10.1007/s10856-008-3659-z

Google Scholar

[14] Sudhakar, Y.N. & Selvakumar, M. (2012). Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochimica Acta. 78, 398-405.

DOI: 10.1016/j.electacta.2012.06.032

Google Scholar

[15] Buraidah, M.H., Teo, L.P., Majid, S.R. & Arof, A.K. (2009). Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte. Physical B: condensed Matter. 404(8-11), 1373-1379.

DOI: 10.1016/j.physb.2008.12.027

Google Scholar

[16] Yahya, W.Z.N, Meng, W. T, Khatani, M., Samsudin, A., Mohamed, N.M. (2017). Bio-based chitosan/PVDF-HFP polymer blend for quasi-solid state electrolyte dye sensitized solar cells. e-polymers, 17(5), 355-361.

DOI: 10.1515/epoly-2016-0305

Google Scholar

[17] Yusof, S. M. M., & Yahya, W. Z. N. (2016). Binary ionic liquid electrolyte for dye-sensitized solar cells. Procedia engineering, 148, 100-105.

DOI: 10.1016/j.proeng.2016.06.453

Google Scholar