The Use of Silane-Aniline as Coupling Agent between Titanium (IV) Oxide Core and Polyaniline Emeraldine Salt Shell

Article Preview

Abstract:

Stable electronic configuration between the interface of an n-type oxide semiconductor core and a p-type polymer shell is necessary in order to guarantee a consistent functioning core-shell structure. This research aims to use silane-aniline to link between an n-type Titanium (IV) oxide (TiO2) core and p-type polyaniline emeraldine salt (PANI-ES) shell. Core-shell structure was created by functionalizing TiO2 powders with silane aniline molecules using simple soaking technique and then polymerizing the attached aniline molecules using an oxidative technique. Infrared spectroscopy reveals the presence of Si-O bonds signifying the presence of linkage between the inorganic core and polymeric shell. Polymerization of the attached aniline molecules may have led to coupling of aromatic rings to form long polymeric structures which caused widening and shifting of aromatic rings’ IR peak to lower wavenumber. In conclusion, silane-aniline was successfully utilized to connect the n-type TiO2 core and p-type PANI-ES shell.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

191-196

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Lu, X. Guo, Y. Luo, Q. Li, R. Zhu, H. Pang: Core-shell materials for advanced batteries. Chemical Engineering Journal 355 (2019), pp.208-237.

DOI: 10.1016/j.cej.2018.08.132

Google Scholar

[2] R. Hayes, A. Ahmed, T. Edge, H. Zhang: Core-shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. Journal of Chromatography A. 1357 (2014), pp.36-52.

DOI: 10.1016/j.chroma.2014.05.010

Google Scholar

[3] F. Khodam, A.R. Amani-Ghadim, S. Aber: Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell. Electrochimita Acta 308 (2019), pp.25-34.

DOI: 10.1016/j.electacta.2019.03.228

Google Scholar

[4] M. Misra, R.K. Gupta, A.K. Paul, M. Singla: Influence of gold core concentration on visible photocatalytic activity of gold-zinc sulfide core-shell nanoparticle. Journal of Power Sources 294 (2015), pp.580-587.

DOI: 10.1016/j.jpowsour.2015.06.099

Google Scholar

[5] X. Zhang, J. Wu, G. Meng, X. Guo, C. Liu, Z. Liu: One-step synthesis of novel PANI-Fe3O4@ZnO core-shell microspheres: An efficient photocatalyst under visible light irradiation. Applied Surface Science 366 (2016), pp.486-493.

DOI: 10.1016/j.apsusc.2016.01.137

Google Scholar

[6] J.P. Matinlinna, C.Y.K. Lung, J.K.H. Tsoi: Silane adhesion in dental applications and surface treatments: A review. Dental Materials 34 (2018), pp.13-28.

DOI: 10.1016/j.dental.2017.09.002

Google Scholar

[7] S.H. Zaferani: Using silane products on fabrication of polymer-based nanocomposite for thin film thermoelectric devices. Renewable and Sustainable Energy Reviews 71 (2017), pp.359-364.

DOI: 10.1016/j.rser.2016.12.064

Google Scholar

[8] M. Li, J. Liu, J. Li, Y. Li, S. Lu, Y. Yuan: The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment. Progress in Natural Science: Materials International 24 (2014), pp.486-491.

DOI: 10.1016/j.pnsc.2014.09.004

Google Scholar

[9] A.Q. Dayo, A. Zegaoui, A.A. Nizamani, S. Kiran, J. Wang, M. Derradji, W. Cai, W. Liu: The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties. Materials Chemistry and Physics 217 (2018), pp.270-277.

DOI: 10.1016/j.matchemphys.2018.06.040

Google Scholar

[10] Y. Liu, J. Xie, N. Wu, L. Wang, Y. Ma, J. Tong: Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforces polymer composites. Tribology International 131 (2019), pp.398-405.

DOI: 10.1016/j.triboint.2018.11.004

Google Scholar

[11] J.G. Kim, I. Choi, D.G. Lee, I.S. Seo: Flame and silane treatments for improving the adhesive bonding characteristics of aramid/epoxy composites. Composite Structures 93 (2011), pp.2696-2705.

DOI: 10.1016/j.compstruct.2011.06.002

Google Scholar

[12] A. Fujishima, T.N. Rao, D.A. Tryk: Titanium dioxide photocatalysis, J. Photochem. Photobiol. C 1 (2000), pp.1-21.

Google Scholar

[13] M.R. Hoffman, S.T. Martinm W. Choi, D.W. Bahnemann: Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995), pp.69-96.

Google Scholar

[14] M.Y. Zhang, C.L. Shao, Z.C. Guo, Z.Y. Zhang, J.B. Mu, T.P. Cao, Y.C. Liu: Hierarchical nanostructures of Copper (II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties, Appl. Mater. Interfaces 3 (2011), p.369–377.

DOI: 10.1021/am100989a

Google Scholar

[15] G. Wang, Q. Wang, W. Lu, J.H. Li: Photoelectrochemical study on charge transfer properties of TiO2−B nanowires with an application as humidity sensors, J. Phys. Chem. B 110 (2006), p.22029–22034.

DOI: 10.1021/jp064630k

Google Scholar

[16] S. Yang, Y. Ishikawa, H. Itoh, Q. Feng: Fabricaton and characterization of core/shell structured TiO2/polyaniline nanocomposite. Journal of Colloid and Interface Science 356 (2011), pp.734-740.

DOI: 10.1016/j.jcis.2011.01.078

Google Scholar

[17] F. Mousli, A. Chaouchi, S. Hocine, A. Lamouri, M.R. Vilar, A. Kadri, M.M. Chehimi: Diazonium-modified TiO2/polyaniline core/shell nanoparticles. Structural characterization, interfacial aspects and photocatalytic performances. Applied Surface Science 465 (2019), pp.1078-1095.

DOI: 10.1016/j.apsusc.2018.09.252

Google Scholar

[18] C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang: Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochimica Acta 247 (2017), pp.486-495.

DOI: 10.1016/j.electacta.2017.07.037

Google Scholar

[19] B.H. Patil, K. Jang, S. Lee, J.H. Kim, C.S. Yoon, J. Kim, D.H. Kim, H. Ahn: Periodically ordered inverse opal TiO2/polyaniline core/shell design for electrochemical storage applications. Journal of Alloys and Compounds 694 (2017), pp.111-118.

DOI: 10.1016/j.jallcom.2016.09.331

Google Scholar

[20] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee: Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 34 (2009), pp.783-810.

DOI: 10.1016/j.progpolymsci.2009.04.003

Google Scholar