[1]
W. Lu, X. Guo, Y. Luo, Q. Li, R. Zhu, H. Pang: Core-shell materials for advanced batteries. Chemical Engineering Journal 355 (2019), pp.208-237.
DOI: 10.1016/j.cej.2018.08.132
Google Scholar
[2]
R. Hayes, A. Ahmed, T. Edge, H. Zhang: Core-shell particles: Preparation, fundamentals and applications in high performance liquid chromatography. Journal of Chromatography A. 1357 (2014), pp.36-52.
DOI: 10.1016/j.chroma.2014.05.010
Google Scholar
[3]
F. Khodam, A.R. Amani-Ghadim, S. Aber: Mg nanoparticles core-CdS QDs shell heterostructures with ZnS passivation layer for efficient quantum dot sensitized solar cell. Electrochimita Acta 308 (2019), pp.25-34.
DOI: 10.1016/j.electacta.2019.03.228
Google Scholar
[4]
M. Misra, R.K. Gupta, A.K. Paul, M. Singla: Influence of gold core concentration on visible photocatalytic activity of gold-zinc sulfide core-shell nanoparticle. Journal of Power Sources 294 (2015), pp.580-587.
DOI: 10.1016/j.jpowsour.2015.06.099
Google Scholar
[5]
X. Zhang, J. Wu, G. Meng, X. Guo, C. Liu, Z. Liu: One-step synthesis of novel PANI-Fe3O4@ZnO core-shell microspheres: An efficient photocatalyst under visible light irradiation. Applied Surface Science 366 (2016), pp.486-493.
DOI: 10.1016/j.apsusc.2016.01.137
Google Scholar
[6]
J.P. Matinlinna, C.Y.K. Lung, J.K.H. Tsoi: Silane adhesion in dental applications and surface treatments: A review. Dental Materials 34 (2018), pp.13-28.
DOI: 10.1016/j.dental.2017.09.002
Google Scholar
[7]
S.H. Zaferani: Using silane products on fabrication of polymer-based nanocomposite for thin film thermoelectric devices. Renewable and Sustainable Energy Reviews 71 (2017), pp.359-364.
DOI: 10.1016/j.rser.2016.12.064
Google Scholar
[8]
M. Li, J. Liu, J. Li, Y. Li, S. Lu, Y. Yuan: The enhanced corrosion resistance of UMAO coatings on Mg by silane treatment. Progress in Natural Science: Materials International 24 (2014), pp.486-491.
DOI: 10.1016/j.pnsc.2014.09.004
Google Scholar
[9]
A.Q. Dayo, A. Zegaoui, A.A. Nizamani, S. Kiran, J. Wang, M. Derradji, W. Cai, W. Liu: The influence of different chemical treatments on the hemp fiber/polybenzoxazine based green composites: Mechanical, thermal and water absorption properties. Materials Chemistry and Physics 217 (2018), pp.270-277.
DOI: 10.1016/j.matchemphys.2018.06.040
Google Scholar
[10]
Y. Liu, J. Xie, N. Wu, L. Wang, Y. Ma, J. Tong: Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforces polymer composites. Tribology International 131 (2019), pp.398-405.
DOI: 10.1016/j.triboint.2018.11.004
Google Scholar
[11]
J.G. Kim, I. Choi, D.G. Lee, I.S. Seo: Flame and silane treatments for improving the adhesive bonding characteristics of aramid/epoxy composites. Composite Structures 93 (2011), pp.2696-2705.
DOI: 10.1016/j.compstruct.2011.06.002
Google Scholar
[12]
A. Fujishima, T.N. Rao, D.A. Tryk: Titanium dioxide photocatalysis, J. Photochem. Photobiol. C 1 (2000), pp.1-21.
Google Scholar
[13]
M.R. Hoffman, S.T. Martinm W. Choi, D.W. Bahnemann: Environmental applications of semiconductor photocatalysis, Chem. Rev. 95 (1995), pp.69-96.
Google Scholar
[14]
M.Y. Zhang, C.L. Shao, Z.C. Guo, Z.Y. Zhang, J.B. Mu, T.P. Cao, Y.C. Liu: Hierarchical nanostructures of Copper (II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties, Appl. Mater. Interfaces 3 (2011), p.369–377.
DOI: 10.1021/am100989a
Google Scholar
[15]
G. Wang, Q. Wang, W. Lu, J.H. Li: Photoelectrochemical study on charge transfer properties of TiO2−B nanowires with an application as humidity sensors, J. Phys. Chem. B 110 (2006), p.22029–22034.
DOI: 10.1021/jp064630k
Google Scholar
[16]
S. Yang, Y. Ishikawa, H. Itoh, Q. Feng: Fabricaton and characterization of core/shell structured TiO2/polyaniline nanocomposite. Journal of Colloid and Interface Science 356 (2011), pp.734-740.
DOI: 10.1016/j.jcis.2011.01.078
Google Scholar
[17]
F. Mousli, A. Chaouchi, S. Hocine, A. Lamouri, M.R. Vilar, A. Kadri, M.M. Chehimi: Diazonium-modified TiO2/polyaniline core/shell nanoparticles. Structural characterization, interfacial aspects and photocatalytic performances. Applied Surface Science 465 (2019), pp.1078-1095.
DOI: 10.1016/j.apsusc.2018.09.252
Google Scholar
[18]
C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang, W. Wang: Enhanced photocatalytic activity of PANI/TiO2 due to their photosensitization-synergetic effect. Electrochimica Acta 247 (2017), pp.486-495.
DOI: 10.1016/j.electacta.2017.07.037
Google Scholar
[19]
B.H. Patil, K. Jang, S. Lee, J.H. Kim, C.S. Yoon, J. Kim, D.H. Kim, H. Ahn: Periodically ordered inverse opal TiO2/polyaniline core/shell design for electrochemical storage applications. Journal of Alloys and Compounds 694 (2017), pp.111-118.
DOI: 10.1016/j.jallcom.2016.09.331
Google Scholar
[20]
S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee: Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science 34 (2009), pp.783-810.
DOI: 10.1016/j.progpolymsci.2009.04.003
Google Scholar