Temperature Dependent Up-Conversion Luminescence Properties of Er3+ Doped KNN Ultrafine Powders Prepared by Pulsed Laser Ablation in Liquid

Article Preview

Abstract:

Er3+ doped potassium sodium niobate (KNN: Er) ultrafine powders have been prepared by pulsed laser ablation in water. X-ray diffraction (XRD) pattern of the sample demonstrated that the as-synthesized powders were crystalized in orthorhombic phase. Scanning electron microscopy (SEM) and transmittance electron microscopy (TEM) images exhibited that the morphology of ultrafine powders are cube-like. Under the excitation of 980 nm laser, the sample exhibits green emission, which is originated from the transition of thermal coupled energy levels (2H11/2, 4S3/2) to ground state level 4I15/2. Temperature dependent up-conversion emission intensity associated with thermal quenching of total green emission band and the fluorescence intensity ratio (FIR) between two sub-emission bands related to population of thermal coupled energy levels are investigated for temperature sensing in the temperature range of 300 K to 480 K. The temperature sensing performances related to different technique were discussed. A maximum relative sensitivity reaches 1.01% K-1 at 464 K for emission intensity thermometry and that is 0.84% K-1 at 374 K for FIR thermometry technique. All these results show that KNN: Er ultrafine phosphors prepared via pulsed laser ablation in water have prospect for non-contact temperature sensing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-202

Citation:

Online since:

June 2020

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Jürgen, J. Wook, T.P.S. Klaus, A. Eva-Maria, G. Torsten: J. Am. Ceram. Soc. Vol.92 (2009), p.1153.

Google Scholar

[2] R. Castañeda-Guzmán, R. López-Juárez, J.J. Gervacio, M.P. Cruz, S. Díaz de la Torre, S.J. Pérez-Ruiz: Thin Solid Films Vol. 636 (2017), p.458.

DOI: 10.1016/j.tsf.2017.06.039

Google Scholar

[3] F. Narita, H. Nagaoka, Z. Wang. Mater. Lett. Vol. 236 (2019), p.487.

Google Scholar

[4] Y.Y. Zhuang, Z. Xu, F. Li, Z.P. Liao, W.H. Liu: J. Alloy. Compd. Vol. 629 (2015), 629 p.113.

Google Scholar

[5] X. Wu, C.C. Fang, J.F. Lin, C.W. Liu, L.H. Luo, M. Lin, X.H. Zheng: Ceram. Int. Vol. 44 (2018), p.4908.

Google Scholar

[6] Y. Zhang, X.S. Wang, H.H. Ye, Y.X. Li, X. Yao: J. Alloy. Compd. Vol. 770 (2019), p.214.

Google Scholar

[7] Y.B. Wei, Z. Wu, Y.M. Jia, J. Wu, Y.C. Shen, H.S. Luo: Appl. Phys. Lett. Vol. 105 (2014), p.042902.

Google Scholar

[8] Y.J. Zhao, X.Y. Yuan, Y.Z. Zhao, H.P. Zhou, J.B. Li, H.B. Jin: Mater. Lett. Vol. 162 (2016), p.226.

Google Scholar

[9] Y. Wang, K.Z. Zheng, S.Y. Song, D.Y. Fan, H.J. Zhang, X.G. Liu: Chem. Soc. Rev. Vol. 47 (2018), p.6473.

Google Scholar

[10] Feng ZH, Lin L, Wang ZZ, Zheng ZQ. Opt. Commun. Vol. 399 (2017), p.40.

Google Scholar

[11] P. Du, L.H. Luo, W.P. Li, Q.Y. Yue, H.B. Chen. Appl. Phys. Lett. Vol. 104 (2014), p.152902.

Google Scholar

[12] X.Y. Li, S. Yuan, F.F. Hu, S.Q. Lu, D.Q. Chen, M. Yin: Opt. Mater. Express Vol. 7 (2017), p.3023.

Google Scholar

[13] L. Lu, Z.S. Sun, C. Ma, R.X. Tao, J.Z. Zhang, H.Y. Li, E.M. Zhao: Mater. Res. Bull. Vol.105 (2018), p.306.

Google Scholar

[14] N. Tsuruoka, T. Sasagawa, T. Yodo, M. Yoshimoto, O. Odawara, H. Wada: SpringerPlus Vol. 5 (2016), p.325.

DOI: 10.1186/s40064-016-1958-2

Google Scholar

[15] Z. Liu, G.C. Jiang, R.X. Wang, C.K. Chai, L.M. Zheng, Z.G. Zhang, B. Yang, W.W. Cao: Ceram. Int. Vol. 42 (2016), p.11309.

Google Scholar

[16] F. Qin, H. Zhao, W. Cai, Z.G. Zhang, W.W. Cao. Appl. Phys. Lett. Vol. 108 (2016), p.241907.

Google Scholar