Synthesis and Electrical Resistance Property of Vanadium Oxide Thin Films by DC Magnetron Sputtering

Article Preview

Abstract:

Thin films of vanadium oxide were synthesized by DC magnetron sputtering on a glass slide. Process parameters including temperature, argon and oxygen ratio (Ar:O2) and base pressure were investigated. It was found that the control of sputtering base pressure is very important in realizing the pure VO2 (M) thin films. These thin films have grown at low base pressure of 5x10-6 mbar. The results of the valence electron analysis show the outstanding phase of VO2 and a small amount of V2O5 and V2O3 phases. The hysteresis loop of electrical resistance property of the VO2 thin films illustrated the quality of film, which is related to metal-insulator transition phase (MIT) at the transition temperature (Tc) of approximately 63°C. The sample was tested for its electrical properties by a four-probe setup with a temperature controller during heating and cooling cycles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

185-190

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q. Song, H. Pang, W. Gong, G. Ning, Y. Zhang, X. Cheng and Y. Lin: Mater. Lett. Vol. 161 (2015), p.244.

Google Scholar

[2] M. Zhu, H. Wang, C. Li, H. Qi, D. Zhang and W. Lv: Surf. Coat. Technol. Vol. 359 (2019), p.396.

Google Scholar

[3] N. Wang, S. Magdassi, D. Mandler and Y. Long: Thin Solid Films Vol. 534 (2013), p.594.

Google Scholar

[4] R. E. Marvel, R. R. Harl, V. Craciun, B. R. Rogers and R. F. Haglund Jr: Acta Biomater. Vol. 91 (2015), p.217.

Google Scholar

[5] I. Derkaoui, M. Khenfouch, B. Mothudi, A. Jorio, I. Zorkani and M. Maaza: Superlattices Microstruct. Vol. 127 (2019), p.11.

DOI: 10.1016/j.spmi.2018.06.044

Google Scholar

[6] A. Rakshit, M. Mukherjee and S. Chakraborty: Mater. Sci. Semicond. Process. Vol. 88 (2018), p.127.

Google Scholar

[7] D.-p. Zhang, M.-d. Zhu, Y. Liu, K. Yang, G.-x. Liang, Z.-h. Zheng, X.-m. Cai and P. Fan: J. Alloys Compd. Vol. 659 (2016), p.198.

Google Scholar

[8] P.D. Raj, S. Gupta and M. Sridharan: Mater. Sci. Semicond. Process. Vol. 39 (2015), p.426.

Google Scholar

[9] R. Balderas-Valadez, E. Antúnez, S. Olive-Méndez, C. Pacholski, J. Campos-Alvarez, X. Bokhimi and V. Agarwal: Ceramics International Vol. 43 (2017), p.8023.

DOI: 10.1016/j.ceramint.2017.03.114

Google Scholar

[10] J. Ye, L. Zhou, F. Liu, J. Qi, W. Gong, Y. Lin and G. Ning: J. Alloys Compd. Vol. 504 (2010), p.503.

Google Scholar

[11] Z. Huang, C. Chen, C. Lv and S. Chen: J. Alloys Compd. Vol. 564 (2013), p.158.

Google Scholar

[12] Y. Luo, S. Pan, S. Xu, L. Zhong, H. Wang and G. Li: J. Alloys Compd. Vol. 664 (2016), p.626.

Google Scholar

[13] Z. Liang, L. Zhao, W. Meng, C. Zhong, S. Wei, B. Dong, Z. Xu, L. Wan and S. Wang: J. Alloys Compd. Vol. 694 (2017), p.124.

Google Scholar

[14] Z. Huang, S. Chen, B. Wang, Y. Huang, N. Liu, J. Xu and J. Lai: Thin Solid Films Vol. 519 (2011), p.4246.

Google Scholar

[15] D. Li, Y. Shan, F. Huang and S. Ding: Appl. Surf. Sci. Vol. 317 (2014), p.160.

Google Scholar