Microwave-Assisted Synthesis of PGS/PCL Nanocomposite Films: Effect of Organo-Modified Montmorillonite

Article Preview

Abstract:

Microwave-assisted synthesis of polyglycerolsebacate (PGS) - polycaprolactone (PCL) with nanoclay composite films were fabricated in this study. PGS produced via microwave irradiation technique was blended withorgano-modified montmorillonite (O-MMT) and PCL, and cast using thermally induced phase separation technique (TIPS) to produce nanocomposite films. The fabricated films underwent different qualitative characterization to identify its morphology, porosity,wettabilityandmechanical strength. FTIR results showed changes in the band peaks signifying the interaction between PCL, O-MMT and PGS. SEM images of the films displayed filamentous and non-uniform pores present on the films, which became more visible upon the addition of O-MMT and PGS.Also, the films showed improved tensile strength and elongation upon addition of PGS, but on an optimum O-MMT amount. Furthermore, the pore size of films increased upon addition of PGS, which confirmed the effect of its hydrophilic in nature. Thiswas correlated to the enhanced wettability of the films produced and the formation of asymmetric surface structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

271-276

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. D. Boland, K. J. Pawlowski, C. P. Barnes, D. G. Simpson, G. E. Wnek, and G. L. Bowlin, Electrospinning of Bioresorbable Polymers for Tissue Engineering Scaffolds,, 2006, p.188–204.

DOI: 10.1021/bk-2006-0918.ch014

Google Scholar

[2] A. K. Gaharwar et al., Nanoclay-enriched poly(€-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells,, Tissue Eng. - Part A, vol. 20, no. 15–16, p.2088–2101, Aug. (2014).

DOI: 10.1089/ten.tea.2013.0281

Google Scholar

[3] Y. Wang, G. A. Ameer, B. J. Sheppard, and R. Langer, A tough biodegradable elastomer,, Nat. Biotechnol., vol. 20, no. 6, p.602–606, (2002).

DOI: 10.1038/nbt0602-602

Google Scholar

[4] H. M. Aydin, K. Salimi, Z. M. O. Rzayev, and E. Pişkin, Microwave-assisted rapid synthesis of poly(glycerol-sebacate) elastomers,, Biomater. Sci., vol. 1, no. 5, p.503–509, May (2013).

DOI: 10.1039/c3bm00157a

Google Scholar

[5] S. Sant, C. M. Hwang, S.-H. Lee, and A. Khademhosseini, Hybrid PGS-PCL microfibrous scaffolds with improved mechanical and biological properties.,, J. Tissue Eng. Regen. Med., vol. 5, no. 4, p.283–91, Apr. (2011).

DOI: 10.1002/term.313

Google Scholar

[6] N. Bitinis, M. Hernandez, R. Verdejo, J. M. Kenny, and M. A. Lopez-Manchado, Recent advances in clay/polymer nanocomposites,, Adv. Mater., vol. 23, no. 44, p.5229–5236, Nov. (2011).

DOI: 10.1002/adma.201101948

Google Scholar

[7] A. K. Solarajan, V. Murugadoss, and S. Angaiah, Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors,, Appl. Mater. Today, vol. 5, p.33–40, Dec. (2016).

DOI: 10.1016/j.apmt.2016.09.002

Google Scholar

[8] S. W. Kim, S. O. Han, I. N. Sim, J. Y. Cheon, and W. H. Park, Fabrication and characterization of cellulose acetate/montmorillonite composite nanofibers by electrospinning,, J. Nanomater., vol. 2015, (2015).

DOI: 10.1155/2015/275230

Google Scholar

[9] X. Li, A. T.-L. Hong, N. Naskar, and H.-J. Chung, Criteria for Quick and Consistent Synthesis of Poly(glycerol sebacate) for Tailored Mechanical Properties.,, Biomacromolecules, vol. 16, no. 5, p.1525–33, May (2015).

DOI: 10.1021/acs.biomac.5b00018

Google Scholar

[10] T. Abudula et al., The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin-Lignin Sol-Gel Nanofibrous Scaffolds.,, Mater. (Basel, Switzerland), vol. 11, no. 3, Mar. (2018).

DOI: 10.3390/ma11030451

Google Scholar

[11] J. Zhu, Q. Zhang, J. Zheng, S. Hou, S. Zhang, and S. Li, Correlation of the polymer hydrophilicity and membrane fabrication process on the properties of asymmetric membranes in a vapor-induced phase-inversion process,, J. Appl. Polym. Sci., vol. 134, no. 15, Apr. (2017).

DOI: 10.1002/app.44701

Google Scholar

[12] A. M. Slavutsky, M. A. Bertuzzi, and M. Armada, Water barrier properties of starch-clay nanocomposite films,, Brazilian J. Food Technol., vol. 15, no. 3, p.208–218, Sep. (2012).

DOI: 10.1590/s1981-67232012005000014

Google Scholar

[13] R. H. A. Haq, M. S. Bin Wahab, and M. U. Wahit, Impact test and bioactivity properties of polycaprolactone (PCL) by addition of nano-montmorillonite (MMT) and hydroxyapatite (HA),, in Applied Mechanics and Materials, 2014, vol. 446–447, p.1129–1133.

DOI: 10.4028/www.scientific.net/amm.446-447.1129

Google Scholar