[1]
S. Abeer, Future Medicine: Nanomedicine, JIMSA 25 (2012)187-192.
Google Scholar
[2]
S. Furuike, M.D. Hossain, Y. Maki, K. Adachi, T. Suzuki, A. Kohori, H. Itoh, M. Yoshida, K. Kinosita, Axle-less F1-ATPase rotates in the correct direction, Science 319 (2008) 955-958.
DOI: 10.1126/science.1151343
Google Scholar
[3]
A. Lohrasebi, Y. Jamali, H. Rafii-Tabar, Modeling the effect of external electric field and current on the stochastic dynamics of ATPase nano-biomolecular motors, Physica A 387 (2008) 5466-5476.
DOI: 10.1016/j.physa.2008.05.030
Google Scholar
[4]
S. Yamaguchi, S. Matsumoto, K. Ishizuka, Y. Iko, K.V. Tabata, H.F. Arata, H. Fujita, H. Noji, I. Hamachi, Thermally Responsive Supramolecular Nanomeshes for On/Off Switching of the Rotary Motion of F1‐ATPase at the Single‐Molecule Level, Chemistry-A European Journal 14 (2008) 1891-1896.
DOI: 10.1002/chem.200701285
Google Scholar
[5]
S.M. Block, Kinesin: What Gives? Minireview, Cell 93 (1998) 5-8.
Google Scholar
[6]
M.J. Schnitzer, S.M. Block, Kinesin hydrolyses one ATP per 8-nm step, Nature 388 (1997) 386-390.
DOI: 10.1038/41111
Google Scholar
[7]
M.D. Wang, M.J. Schnitzer, H. Yin, R. Landick, J. Gelles, S.M. Block, Force and velocity measured for single molecules of RNA polymerase, Science 282 (1998) 902-907.
DOI: 10.1126/science.282.5390.902
Google Scholar
[8]
K. Kitamura, M. Tokunaga, A.H. Iwane, T. Yanagida, A single myosin head moves along an actin filament with regular steps of 5.3 nanometres, Nature 397 (1999) 129-134.
DOI: 10.1038/16403
Google Scholar
[9]
C. Montemagno, G. Bachand, S. Stelick, M. Bachand, Constructing biological motor powered nanomechanical devices, Nanotechnology 10 (1999) 225-231.
DOI: 10.1088/0957-4484/10/3/301
Google Scholar
[10]
G. Bachand, C. Montemagno, Constructing organic/inorganic NEMS devices powered by biomolecular motors, Biomedical Microdevices 2 (2000) 179-184.
Google Scholar
[11]
R. Yasuda, H. Noji, K. Kinosita, M. Yoshida, F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120 Steps, Cell 93 (1998) 1117-1124.
DOI: 10.1016/s0092-8674(00)81456-7
Google Scholar
[12]
H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Direct observation of the rotation of F1-ATPase, Nature 386 (1997) 299-302.
DOI: 10.1038/386299a0
Google Scholar
[13]
R. Soong, G. Bachand, H. Neves, A. Olkhovets, H. Craighead, C. Montemagno, Powering an inorganic nanodevice with a biomolecular motor, Science 290 (2000) 1555-1558.
DOI: 10.1126/science.290.5496.1555
Google Scholar
[14]
A.A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The cytoskeleton, in: M. Anderson, S. Granum (Eds.), Molecular Biology of the Cell, 5th edition, Garland science, Taylor & Francis Group, New York, 2007 p.1022.
Google Scholar
[15]
A.A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The cytoskeleton, in: M. Anderson, S. Granum (Eds.), Molecular Biology of the Cell, 5th edition, Garland science, Taylor & Francis Group, New York, 2007 p.1025.
Google Scholar
[16]
Adapted from the Wikimedia Commons file "Image: Atp Synthase.png" [http://en.wikipedia.org/wiki/File:Atp_synthase.PNG]
Google Scholar
[17]
Y.M. Romanovsky, A.N. Tikhonov, Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor, Physics-Uspekhi 53 (2010) 893.
DOI: 10.3367/ufne.0180.201009b.0931
Google Scholar
[18]
A.A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Mechanisms of Cell Communication, in: M. Anderson, S. Granum (Eds.), Molecular Biology of the Cell, 5th edition, Garland science, Taylor & Francis Group, New York, 2007 p.943.
Google Scholar
[19]
G. Oster, H. Wang, Rotary protein motors, Trends in cell biology, 13 (2003) 114-121.
DOI: 10.1016/s0962-8924(03)00004-7
Google Scholar
[20]
D. Kaiser, Bacterial motility: How do pili pull? Current Biology 10 (2000) R777-R780.
DOI: 10.1016/s0960-9822(00)00764-8
Google Scholar
[21]
Image from the RCSB PDB (www.pdb.org) of PDB ID 1C17 (V.K. Rastogi, M.E. Girvin, Structural changes linked to proton translocation by subunit c of the ATP synthase, Nature,402 (1999) 263-268.
DOI: 10.1038/46224
Google Scholar
[22]
B. Maier, L. Potter, M. So, H. Seifert, M.P. Sheetz, Single pilus motor forces exceed 100 pN, PNAS 99 (2002) 16012-16017.
DOI: 10.1073/pnas.242523299
Google Scholar
[23]
G. Oster, H. Wang, Reverse engineering a protein: the mechanochemistry of ATP synthase. BBA 1458(2) (2000) 482-510.
DOI: 10.1016/s0005-2728(00)00096-7
Google Scholar
[24]
CSID:5742 on [http://www.chemspider.com/Chemical-Structure.5742.html]
Google Scholar
[25]
A.E. Senior, ATP synthase: Motoring to the finish line, Cell 130 (2007) 220-221.
DOI: 10.1016/j.cell.2007.07.004
Google Scholar
[26]
R. Garrett, C.M. Grisham, Biochemistry, Belmont, CA: Brooks/Cole, Cengage Learning 2010.
Google Scholar
[27]
Bald, ATP Synthase: Structure, Function and Regulation of a Complex Machine, in: G.A. Peschek et al. (Eds.), Bioenergetic Processes of Cyanobacteria, Springer, Netherlands, 2011, pp.239-261.
DOI: 10.1007/978-94-007-0388-9_10
Google Scholar
[28]
Reprinted (adapted) with permission from "H. Noji, Research of rotating molecule, ATP synthetase, Biohistory journal, Winter (2004)." Copyright 2004 JT Biohistory Research Hall. [http://www.brh.co.jp/en/seimeishi/journal/043/research_11.html]
Google Scholar
[29]
H. Noji, Research of rotating molecule, ATP synthetase, Biohistory Journal, Winter (2004). Website: http://www.brh.co.jp/en/seimeishi/journal/043/research_11.html
Google Scholar
[30]
W. Junge, H. Lill, S. Engelbrecht, ATP synthase: an electrochemical transducer with rotatory mechanics, Trends Biochem. Sci. 22 (1997) 420.
DOI: 10.1016/s0968-0004(97)01129-8
Google Scholar
[31]
P.D. Boyer, The ATP synthase-a splendid molecular machine, Annu. Rev. Biochem. 66 (1997) 717-749.
DOI: 10.1146/annurev.biochem.66.1.717
Google Scholar
[32]
K. Kinosita Jr., K. Adachi, H. Itoh, Rotation of F1-ATPase: How an ATP-driven molecular machine may work, Annu. Rev. Biophys. Biomol. Struct. 33 (2004) 245-268.
DOI: 10.1146/annurev.biophys.33.110502.132716
Google Scholar
[33]
S. Toyabe, E. Muneyuki, Nanosized free-energy transducer F1-ATPase achieves 100% efficiency at finite time operation, arXiv preprint arXiv: 1210.4017 (2012).
Google Scholar
[34]
G.D. Bachand, R.K. Soong, H.P. Neves, A, Olkhovets, H.G. Craighead, C.D. Montemagno, Precision attachment of individual F1-ATPase biomolecular motors on nanofabricated substrates. Nano Lett. 1 (2001) 42-44.
DOI: 10.1021/nl005513i
Google Scholar
[35]
D. Spetzler, R. Ishmukhametov, T. Hornung, L.J. Day, J. Martin, W.D. Frasch, Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration, Biochemistry 48 (2009) 7979-7985.
DOI: 10.1021/bi9008215
Google Scholar
[36]
A. Palanisami, T. Okamoto, Torque-induced slip of the rotary motor F1-ATPase, Nano Lett. 10 (2010) 4146-4149.
DOI: 10.1021/nl102414d
Google Scholar
[37]
T. Uchihashi, R. Iino, T. Ando, H. Noji, High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase, Science 333 (2011) 755-758.
DOI: 10.1126/science.1205510
Google Scholar
[38]
Y. Ito, T. Oroguchi, M. Ikeguchi, Mechanism of the conformational change of the F1-ATPase β subunit revealed by free energy simulations, J. Am. Chem. Soc. 133 (2011) 3372-3380.
DOI: 10.1021/ja1070152
Google Scholar
[39]
E. Cabezon, V.F. Lanza, I. Arechaga, Membrane-associated nanomotors for macromolecular transport, Curr. Opin. Biotechnol. 23 (2012) 537-544.
DOI: 10.1016/j.copbio.2011.11.031
Google Scholar
[40]
Reprinted (adapted) with permission from "H. Choi, C. Montemagno, Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 5 (2006) 2538-2542.
DOI: 10.1021/nl051896e
Google Scholar
[41]
R. Segelken, Fantastic voyage: Tiny pharmacies propelled through the body could result from Cornell breakthrough in molecular motors, 1999 on [http://www.news.cornell.edu/releases/sept99/bio_nano_mechanical.hrs.html]
Google Scholar
[42]
R. Segelken, How Cornell scientists uncover and remake molecules of life. On [http://www.news.cornell.edu/chronicle/00/10.12.00/ss-molecules_of_life.html]
Google Scholar
[43]
Liu, S. Wang, W. Xu, Q. Liang, Bio-nano-robot and drug targeting delivery technology, Chinese Journal of Mechanical Engineering 44 (2008) 80-86.
DOI: 10.3901/jme.2008.11.080
Google Scholar
[44]
C. Kaparissides, S. Alexandridou, K. Kotti, S. Chaitidou, Recent advances in novel drug delivery systems, Journal of Nanotechnology Online 2 (2006) 1-11.
Google Scholar
[45]
C. Cunshe, L. Xiaojuan, Application of a biosensor for super sensitive detector of clenbuterol, N.Z. J. Agric. Res. 50 (2007) 689-695.
DOI: 10.1080/00288230709510339
Google Scholar
[46]
Q. He, L. Duan, W. Qi, K. Wang, Y. Cui, X. Yan, J. Li, Microcapsules containing a biomolecular motor for ATP biosynthesis, Adv. Mater. 20 (2008) 2933-2937.
DOI: 10.1002/adma.200800622
Google Scholar
[47]
K. Gilleo, The Sci-Fi Future of Medicine … the Next 50 Years. On [www.allflexinc.com/PDF/Future%20of%20Medicine.pdf]
Google Scholar
[48]
B. Alberts, Cell Biology: The Endless Frontier, Molecular Biology of the Cell 21(2010) 3785-3785.
DOI: 10.1091/mbc.e10-04-0334
Google Scholar