Functions and Future Applications of F1 ATPase as Nanobioengine - Powering the Nanoworld!

Article Preview

Abstract:

Recent nanotechnological revolution mandates astonishing imagination about future nanoworld. Nature has ability to create nanobiomolecules which can function in extraordinary way which can be used to produce nanohybrid systems. The opportunity to use such nanobiomolecules in combination of nanomechanical systems for development of novel nanohybrid systems for their various applications needs to explore in further nanotechnological development. F1 ATPase is a subunit of ATP synthase, which is one of the biomolecular structure works on the plasma membrane of the living cell. The reversible function of F1 ATPase gives a counterclockwise rotation of γ shaft by hydrolyzing ATP and the energy released in the form of rotational torque. This rotational torque of F1 ATPase can be used to power the functional movement of nanodevice. This feature article discusses comparisons of various biomolecular motors for their powering capacities, recent developments, presents new discoveries, experimentations on F1 ATPase and its novel imaginary futuristic applications where F1 ATPase could be used as nanobioengine for powering functional nanoworld.

You have full access to the following eBook

Info:

Periodical:

Nano Hybrids (Volume 5)

Pages:

33-53

Citation:

Online since:

October 2013

Authors:

Export:

Share:

Citation:

[1] S. Abeer, Future Medicine: Nanomedicine, JIMSA 25 (2012)187-192.

Google Scholar

[2] S. Furuike, M.D. Hossain, Y. Maki, K. Adachi, T. Suzuki, A. Kohori, H. Itoh, M. Yoshida, K. Kinosita, Axle-less F1-ATPase rotates in the correct direction, Science 319 (2008) 955-958.

DOI: 10.1126/science.1151343

Google Scholar

[3] A. Lohrasebi, Y. Jamali, H. Rafii-Tabar, Modeling the effect of external electric field and current on the stochastic dynamics of ATPase nano-biomolecular motors, Physica A 387 (2008) 5466-5476.

DOI: 10.1016/j.physa.2008.05.030

Google Scholar

[4] S. Yamaguchi, S. Matsumoto, K. Ishizuka, Y. Iko, K.V. Tabata, H.F. Arata, H. Fujita, H. Noji, I. Hamachi, Thermally Responsive Supramolecular Nanomeshes for On/Off Switching of the Rotary Motion of F1‐ATPase at the Single‐Molecule Level, Chemistry-A European Journal 14 (2008) 1891-1896.

DOI: 10.1002/chem.200701285

Google Scholar

[5] S.M. Block, Kinesin: What Gives? Minireview, Cell 93 (1998) 5-8.

Google Scholar

[6] M.J. Schnitzer, S.M. Block, Kinesin hydrolyses one ATP per 8-nm step, Nature 388 (1997) 386-390.

DOI: 10.1038/41111

Google Scholar

[7] M.D. Wang, M.J. Schnitzer, H. Yin, R. Landick, J. Gelles, S.M. Block, Force and velocity measured for single molecules of RNA polymerase, Science 282 (1998) 902-907.

DOI: 10.1126/science.282.5390.902

Google Scholar

[8] K. Kitamura, M. Tokunaga, A.H. Iwane, T. Yanagida, A single myosin head moves along an actin filament with regular steps of 5.3 nanometres, Nature 397 (1999) 129-134.

DOI: 10.1038/16403

Google Scholar

[9] C. Montemagno, G. Bachand, S. Stelick, M. Bachand, Constructing biological motor powered nanomechanical devices, Nanotechnology 10 (1999) 225-231.

DOI: 10.1088/0957-4484/10/3/301

Google Scholar

[10] G. Bachand, C. Montemagno, Constructing organic/inorganic NEMS devices powered by biomolecular motors, Biomedical Microdevices 2 (2000) 179-184.

Google Scholar

[11] R. Yasuda, H. Noji, K. Kinosita, M. Yoshida, F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120 Steps, Cell 93 (1998) 1117-1124.

DOI: 10.1016/s0092-8674(00)81456-7

Google Scholar

[12] H. Noji, R. Yasuda, M. Yoshida, K. Kinosita, Direct observation of the rotation of F1-ATPase, Nature 386 (1997) 299-302.

DOI: 10.1038/386299a0

Google Scholar

[13] R. Soong, G. Bachand, H. Neves, A. Olkhovets, H. Craighead, C. Montemagno, Powering an inorganic nanodevice with a biomolecular motor, Science 290 (2000) 1555-1558.

DOI: 10.1126/science.290.5496.1555

Google Scholar

[14] A.A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The cytoskeleton, in: M. Anderson, S. Granum (Eds.), Molecular Biology of the Cell, 5th edition, Garland science, Taylor & Francis Group, New York, 2007 p.1022.

Google Scholar

[15] A.A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The cytoskeleton, in: M. Anderson, S. Granum (Eds.), Molecular Biology of the Cell, 5th edition, Garland science, Taylor & Francis Group, New York, 2007 p.1025.

Google Scholar

[16] Adapted from the Wikimedia Commons file "Image: Atp Synthase.png" [http://en.wikipedia.org/wiki/File:Atp_synthase.PNG]

Google Scholar

[17] Y.M. Romanovsky, A.N. Tikhonov, Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor, Physics-Uspekhi 53 (2010) 893.

DOI: 10.3367/ufne.0180.201009b.0931

Google Scholar

[18] A.A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Mechanisms of Cell Communication, in: M. Anderson, S. Granum (Eds.), Molecular Biology of the Cell, 5th edition, Garland science, Taylor & Francis Group, New York, 2007 p.943.

Google Scholar

[19] G. Oster, H. Wang, Rotary protein motors, Trends in cell biology, 13 (2003) 114-121.

DOI: 10.1016/s0962-8924(03)00004-7

Google Scholar

[20] D. Kaiser, Bacterial motility: How do pili pull? Current Biology 10 (2000) R777-R780.

DOI: 10.1016/s0960-9822(00)00764-8

Google Scholar

[21] Image from the RCSB PDB (www.pdb.org) of PDB ID 1C17 (V.K. Rastogi, M.E. Girvin, Structural changes linked to proton translocation by subunit c of the ATP synthase, Nature,402 (1999) 263-268.

DOI: 10.1038/46224

Google Scholar

[22] B. Maier, L. Potter, M. So, H. Seifert, M.P. Sheetz, Single pilus motor forces exceed 100 pN, PNAS 99 (2002) 16012-16017.

DOI: 10.1073/pnas.242523299

Google Scholar

[23] G. Oster, H. Wang, Reverse engineering a protein: the mechanochemistry of ATP synthase. BBA 1458(2) (2000) 482-510.

DOI: 10.1016/s0005-2728(00)00096-7

Google Scholar

[24] CSID:5742 on [http://www.chemspider.com/Chemical-Structure.5742.html]

Google Scholar

[25] A.E. Senior, ATP synthase: Motoring to the finish line, Cell 130 (2007) 220-221.

DOI: 10.1016/j.cell.2007.07.004

Google Scholar

[26] R. Garrett, C.M. Grisham, Biochemistry, Belmont, CA: Brooks/Cole, Cengage Learning 2010.

Google Scholar

[27] Bald, ATP Synthase: Structure, Function and Regulation of a Complex Machine, in: G.A. Peschek et al. (Eds.), Bioenergetic Processes of Cyanobacteria, Springer, Netherlands, 2011, pp.239-261.

DOI: 10.1007/978-94-007-0388-9_10

Google Scholar

[28] Reprinted (adapted) with permission from "H. Noji, Research of rotating molecule, ATP synthetase, Biohistory journal, Winter (2004)." Copyright 2004 JT Biohistory Research Hall. [http://www.brh.co.jp/en/seimeishi/journal/043/research_11.html]

Google Scholar

[29] H. Noji, Research of rotating molecule, ATP synthetase, Biohistory Journal, Winter (2004). Website: http://www.brh.co.jp/en/seimeishi/journal/043/research_11.html

Google Scholar

[30] W. Junge, H. Lill, S. Engelbrecht, ATP synthase: an electrochemical transducer with rotatory mechanics, Trends Biochem. Sci. 22 (1997) 420.

DOI: 10.1016/s0968-0004(97)01129-8

Google Scholar

[31] P.D. Boyer, The ATP synthase-a splendid molecular machine, Annu. Rev. Biochem. 66 (1997) 717-749.

DOI: 10.1146/annurev.biochem.66.1.717

Google Scholar

[32] K. Kinosita Jr., K. Adachi, H. Itoh, Rotation of F1-ATPase: How an ATP-driven molecular machine may work, Annu. Rev. Biophys. Biomol. Struct. 33 (2004) 245-268.

DOI: 10.1146/annurev.biophys.33.110502.132716

Google Scholar

[33] S. Toyabe, E. Muneyuki, Nanosized free-energy transducer F1-ATPase achieves 100% efficiency at finite time operation, arXiv preprint arXiv: 1210.4017 (2012).

Google Scholar

[34] G.D. Bachand, R.K. Soong, H.P. Neves, A, Olkhovets, H.G. Craighead, C.D. Montemagno, Precision attachment of individual F1-ATPase biomolecular motors on nanofabricated substrates. Nano Lett. 1 (2001) 42-44.

DOI: 10.1021/nl005513i

Google Scholar

[35] D. Spetzler, R. Ishmukhametov, T. Hornung, L.J. Day, J. Martin, W.D. Frasch, Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell duration, Biochemistry 48 (2009) 7979-7985.

DOI: 10.1021/bi9008215

Google Scholar

[36] A. Palanisami, T. Okamoto, Torque-induced slip of the rotary motor F1-ATPase, Nano Lett. 10 (2010) 4146-4149.

DOI: 10.1021/nl102414d

Google Scholar

[37] T. Uchihashi, R. Iino, T. Ando, H. Noji, High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase, Science 333 (2011) 755-758.

DOI: 10.1126/science.1205510

Google Scholar

[38] Y. Ito, T. Oroguchi, M. Ikeguchi, Mechanism of the conformational change of the F1-ATPase β subunit revealed by free energy simulations, J. Am. Chem. Soc. 133 (2011) 3372-3380.

DOI: 10.1021/ja1070152

Google Scholar

[39] E. Cabezon, V.F. Lanza, I. Arechaga, Membrane-associated nanomotors for macromolecular transport, Curr. Opin. Biotechnol. 23 (2012) 537-544.

DOI: 10.1016/j.copbio.2011.11.031

Google Scholar

[40] Reprinted (adapted) with permission from "H. Choi, C. Montemagno, Artificial organelle: ATP synthesis from cellular mimetic polymersomes. Nano Lett. 5 (2006) 2538-2542.

DOI: 10.1021/nl051896e

Google Scholar

[41] R. Segelken, Fantastic voyage: Tiny pharmacies propelled through the body could result from Cornell breakthrough in molecular motors, 1999 on [http://www.news.cornell.edu/releases/sept99/bio_nano_mechanical.hrs.html]

Google Scholar

[42] R. Segelken, How Cornell scientists uncover and remake molecules of life. On [http://www.news.cornell.edu/chronicle/00/10.12.00/ss-molecules_of_life.html]

Google Scholar

[43] Liu, S. Wang, W. Xu, Q. Liang, Bio-nano-robot and drug targeting delivery technology, Chinese Journal of Mechanical Engineering 44 (2008) 80-86.

DOI: 10.3901/jme.2008.11.080

Google Scholar

[44] C. Kaparissides, S. Alexandridou, K. Kotti, S. Chaitidou, Recent advances in novel drug delivery systems, Journal of Nanotechnology Online 2 (2006) 1-11.

Google Scholar

[45] C. Cunshe, L. Xiaojuan, Application of a biosensor for super sensitive detector of clenbuterol, N.Z. J. Agric. Res. 50 (2007) 689-695.

DOI: 10.1080/00288230709510339

Google Scholar

[46] Q. He, L. Duan, W. Qi, K. Wang, Y. Cui, X. Yan, J. Li, Microcapsules containing a biomolecular motor for ATP biosynthesis, Adv. Mater. 20 (2008) 2933-2937.

DOI: 10.1002/adma.200800622

Google Scholar

[47] K. Gilleo, The Sci-Fi Future of Medicine … the Next 50 Years. On [www.allflexinc.com/PDF/Future%20of%20Medicine.pdf]

Google Scholar

[48] B. Alberts, Cell Biology: The Endless Frontier, Molecular Biology of the Cell 21(2010) 3785-3785.

DOI: 10.1091/mbc.e10-04-0334

Google Scholar