[1]
J. Zhao, R.H. Xi, Electronic and photonic properties of doped carbon nanotubes, J. Nanosci. Nanotechnol. 3 (2003) 459-478.
Google Scholar
[2]
X.R. Wang et al, N-doping of graphene through electrochemical reactions with ammonia, Science 324 (2009) 768-771.
Google Scholar
[3]
T.X. Cui et al, Synthesis of nitrogen-doped carbon thin films and their applications in solar cells, Carbon 49 (2011) 5022-5028.
DOI: 10.1016/j.carbon.2011.07.019
Google Scholar
[4]
C. Chen, C. Park, B.W. Boudouris, J. Horng, B. Geng, C. Girit, A. Zettl, M.F. Crommie, R.A. Segalman, S.G. Louie, F. Wang, Controlling inelastic light scattering quantum pathways in grapheme, Nature 471 (2011) 617-620.
DOI: 10.1038/nature09866
Google Scholar
[5]
L.T. Qui et al, Nitrogen doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS Nano 4 (2010) 1321-1326.
DOI: 10.1021/nn901850u
Google Scholar
[6]
Y. Wang et al, Nitrogen doped graphene and its application in electrochemical biosensing, ACS Nano 4 (2010) 1790-1798.
DOI: 10.1021/nn100315s
Google Scholar
[7]
C. Zhou, J. Kong, E. Yenilmez, H. Dai, Modulated Chemical Doping of Individual Carbon Nanotubes, Science 290 (2000) 1552-1555.
DOI: 10.1126/science.290.5496.1552
Google Scholar
[8]
P. Ayala, R. Arenal, M. Rummeli, A. Rubio, T. Pichler, The doping of carbon nanotubes with nitrogen and their potential applications, Carbon 48 (2010) 575-586.
DOI: 10.1016/j.carbon.2009.10.009
Google Scholar
[9]
R.T. Lv et al, Open ended, N-doped carbon nanotubes-graphene hybrid nanostructures as high-performance catalyst support, Adv. Funct. Mater. 21 (2011) 999-1006.
DOI: 10.1002/adfm.201001602
Google Scholar
[10]
T.B. Martins, R.H. Miwa, Antonio J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons, Phys. Rev. Lett. 98 (2007) 196803-1-4.
DOI: 10.1103/physrevlett.98.196803
Google Scholar
[11]
E. Cruz-Silva, Z. M. Barnett, B. G. Sumpter, V. Meunier, Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles, Phys. Rev. B 83 (2011) 155445-1-9.
DOI: 10.1103/physrevb.83.155445
Google Scholar
[12]
H. Lee, J. Li, G. Zhou, W. Duan, G. Kim, J. Ihm, Room-temperature dissociative hydrogen chemisorption on boron-doped fullerenes, Phys. Rev. B 77 (2008) 235101-1-5.
DOI: 10.1103/physrevb.77.235101
Google Scholar
[13]
R.H. Miwa, T.B. Martins, A. Fazzio, Hydrogen adsorption on boron doped graphene: an ab initio study, Nanotechnology 19 (2008) 155708-1-7.
DOI: 10.1088/0957-4484/19/15/155708
Google Scholar
[14]
L. Firlej, Sz. Roszak, B. Kuchta, P. Pfeifer, C. Wexler, Enhanced hydrogen adsorption in boron substituted carbon nanospaces, J. Chem. Phys. 131 (2009) 164702-1-4.
DOI: 10.1063/1.3251788
Google Scholar
[15]
Y.G. Zhou, X.T. Zu, F. Gao, J.L. Nie, H.Y. Xiao, Adsorption of hydrogen on boron-doped graphene: A first-principles prediction, J. Appl. Phys. 105 (2009) 014309.
DOI: 10.1063/1.3056380
Google Scholar
[16]
S. Mukherjee, T.P. Kaloni, Electronic properties of boron- and nitrogen-doped graphene: a first principles study, J. Nanopart. Res. 14 (2012) 1059-1-5.
DOI: 10.1007/s11051-012-1059-2
Google Scholar
[17]
Z.H. Zhu, G.Q. Lu, H. Hatori, New insights into the interaction of hydrogen atoms with boron-substituted carbon, Phys. Chem. B 110 (2006) 1249-1255.
DOI: 10.1021/jp0516590
Google Scholar
[18]
Z. Zhou, X. Gao, J. Yan, D. Song, Doping effects of B and N on hydrogen adsorpti on in single-walled carbon nanotubes through density functional calculations, Carbon 44 (2006) 939-947.
DOI: 10.1016/j.carbon.2005.10.016
Google Scholar
[19]
S. Yu, W. Zheng, Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons, Nanoscale 2 (2010) 1069-1082.
DOI: 10.1039/c0nr00002g
Google Scholar
[20]
J. Saloni, W. Kolodziejczyk, S. Roszak, D. Majumdar, G. Hill Jr, J. Leszczynski, Local and global electronic effects in single and double boron-doped carbon nanotubes, J. Phys. Chem. C 114 (2010) 1528-1533.
DOI: 10.1021/jp910625w
Google Scholar
[21]
B. Delley, Analytic energy derivatives in the numerical local-density-functional approach, J. Chem. Phys. 94(11) (1991) 7245-7250.
DOI: 10.1063/1.460208
Google Scholar
[22]
J. P. Perdew, Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23) (1992) 13244-13249.
DOI: 10.1103/physrevb.45.13244
Google Scholar