Photoluminescence from Gold and Silver Nanoparticles

Article Preview

Abstract:

This review is an attempt to highlight some of the significant results of the work carried out on the photoluminescence from nanoparticles of the noble metals, particularly gold and silver, over the past two decades. Although quite an immense amount of reports can be found, those that have contributed in throwing some light on the underlying mechanism behind photoluminescence have been considered here. Interband radiative recombination of electrons in metals or photoluminescence (PL), though very weak, was first reported in Au, Cu and Au-Cu alloys. A simple model attributes the PL to the radiative recombination of conduction band electrons below the Fermi energy with d-band holes. Most of the mechanisms are based on this concept. Only small sized clusters are known to exhibit luminescence, with the appearance of additional features which changed with the surfactants suggesting ligand to metal charge transfer. Further, the observation that more polar ligands do indeed enhance the luminescence intensity supports ligand to metal charge transfer. A non-radiative decay of excited electrons from 6sp-band to interface electron energy levels or bands (IEEB), that could be created due to charge transfer from the ligand to the metal core, followed by radiative recombination of electrons from these levels with the hole in the d-band could be another possible mechanism, which is supported by the size independence of the PL emission peak position. However, it is possible that these mechanisms operate independently or even simultaneously depending on various factors like size, ligands, dispersion medium, particle surface topography and so on.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J.P. Scaffidi, M.K. Gregas, V. Seewaldt, T. Vo-Dinh, SERS-based plasmonic nanobiosensing in single living cells, Anal Bioanal. Chem. 393 (2009) 1135-1141.

DOI: 10.1007/s00216-008-2521-y

Google Scholar

[2] X. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy, Nanomedicine (2007) 2(5) (2007) 681-693.

DOI: 10.2217/17435889.2.5.681

Google Scholar

[3] N. Krasteva, I. Besnard, B. Guse, R.E. Bauer, K. Mullen, A. Yasuda, T. Vossmeyer, Self-Assembled Gold Nanoparticle/Dendrimer Composite Films for Vapor Sensing Applications, Nano Lett. 2(5) (2002) 551-555.

DOI: 10.1021/nl020242s

Google Scholar

[4] L. Pasquato, P. Pengo, P. Scrimin, Functional gold nanoparticles for recognition and catalysis, J. Mater. Chem. 14 (2004) 3481-3487.

DOI: 10.1039/b410476e

Google Scholar

[5] V.P. Drachev, E.N. Khaliullin, W. Kim, F. Alzoubi, S.G. Rautian, V.P. Safonov, R.L. Armstrong, V.M. Shalaev, Quantum size effect in two-photon excited luminescence from silver nanoparticles, Phys. Rev. B 69 (2004) 035318 (5 pp).

DOI: 10.1103/physrevb.69.035318

Google Scholar

[6] J.P. Wilcoxon, J.E. Martin, F. Parsapour, B. Wiedenman, D.F. Kelley, J. Chem.Phys. 108 (1998) 9137-9143.

DOI: 10.1063/1.476360

Google Scholar

[7] L. Prodi, G. Battistini, L.S. Dolci,M. Montalti, N. Zaccheroni, Luminescence of Gold Nanoparticles, Optical Sciences 133 (2007) 99-128.

DOI: 10.1007/978-0-387-48951-3_5

Google Scholar

[8] L.Maretti, P.S. Billone,Y. Liu, J.C. Scaiano, Facile Photochemical Synthesis and Characterization of Highly Fluorescent Silver Nanoparticles, J. Am. Chem. Soc. 131 (2009) 13973-13980.

DOI: 10.1021/ja900201k

Google Scholar

[9] A. Mooradian, Photoluminescence of Metals, Phys. Rev. Lett. 22 (5) (1969) 185-187.

Google Scholar

[10] G.T. Boyd, Z.H. Yu, Y.R. Shen, Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces, Phys. Rev. B 33 (1986) 7923-7936.

DOI: 10.1103/physrevb.33.7923

Google Scholar

[11] P. Apell, R. Monreal, S. Lundqvist, Photoluminescence of noble metals, Physica Scripta 38 (2) (1988) 174-179.

DOI: 10.1088/0031-8949/38/2/012

Google Scholar

[12] O. Varnavski, R.G. Ispasoiu, L. Balogh, D. Tomalia, T. Goodson, Ultrafast time-resolved photoluminescence from novel metal–dendrimer nanocomposites, J. Chem. Phys. 114 (2001) 1962-1965.

DOI: 10.1063/1.1344231

Google Scholar

[13] J. Zheng, C. Zhang, R.M. Dickson, Highly Fluorescent, Water-Soluble, Size-Tunable Gold Quantum Dots, Phys. Rev. Lett. 93 (2004) 077402 (4 pages).

DOI: 10.1103/physrevlett.93.077402

Google Scholar

[14] J. Zheng, J.T. Petty, R.M. Dickson, High Quantum Yield Blue Emission from Water-Soluble Au8 Nanodots, J. Am. Chem. Soc. 125(26) (2003) 7780-7781.

DOI: 10.1021/ja035473v

Google Scholar

[15] A. Longo, G.P. Pepe, A. Ruotolo, S.D. Nicola, V.I. Belotelov, A.K. Zvezdin, Optical emission studies in Au/Ag nanoparticles, Nanotechnology 18 (2007) 365701 (5pp).

DOI: 10.1088/0957-4484/18/36/365701

Google Scholar

[16] R.A. Farrer, F.L. Butterfield, V.W. Chen, J.T. Fourkas, Highly Efficient Multiphoton-Absorption-Induced Luminescence from Gold Nanoparticles, Nano Lett. 5(6) (2005) 1139-1142.

DOI: 10.1021/nl050687r

Google Scholar

[17] T. Huang, R.W. Murray, Visible Luminescence of Water-Soluble Monolayer-Protected Gold Clusters, J. Phys. Chem. B 105 (2001) 12498-12505.

DOI: 10.1021/jp0041151

Google Scholar

[18] D. Lee, R.L. Donkers, G. Wang, A.S. Harper, R.W. Murray, Electrochemistry and Optical Absorbance and Luminescence of Molecule-like Au38 Nanoparticles, J. Am. Chem. Soc. 126 (2004) 6193-6199.

DOI: 10.1021/ja049605b

Google Scholar

[19] S. Link, A. Beeby, S. Fitzgerald, M.A. El-Sayed, T.G. Schaaff, R.L. Whetten, Visible to Infrared Luminescence from a 28-Atom Gold Cluster, J. Phys. Chem. B 106 (2002) 3410-3415.

DOI: 10.1021/jp014259v

Google Scholar

[20] G. Wang, T. Huang, L. Menard, R.G. Nuzzo, Near-IR Luminescence of Monolayer-Protected Metal Clusters, J. Am. Chem. Soc. 127 (2005) 812-813.

DOI: 10.1021/ja0452471

Google Scholar

[21] G. Wang, R. Guo, G. Kalyuzhny, J.-P. Choi, R.W. Murray, NIR Luminescence Intensities Increase Linearly with Proportion of Polar Thiolate Ligands in Protecting Monolayers of Au38 and Au140 Quantum Dots, J. Phys. Chem. B 110 (2006) 20282-20289.

DOI: 10.1021/jp0640528.s001

Google Scholar

[22] X. Tu, W. Chen, X. Guo, Facile one-pot synthesis of near-infrared luminescent gold nanoparticles for sensing copper (II), Nanotechnology (2011) 22 (2011) 095701 (7pp).

DOI: 10.1088/0957-4484/22/9/095701

Google Scholar

[23] H.Y. Lin, Y.F. Chen, Enhanced luminescence by second-harmonic surface plasmon resonance, Proc. Emerging Information Technology Conference, 2005; ISBN: 0-7803- 9328-7.

DOI: 10.1109/eitc.2005.1544349

Google Scholar

[24] T.P. Bigioni, R.L. Whetten, Ö. Dag, Near-Infrared Luminescence from Small Gold Nanocrystals, J. Phys. Chem. B 104 (2000) 6983-6986.

DOI: 10.1021/jp993867w

Google Scholar

[25] R.M. Pattabi, M. Pattabi, Synthesis and characterization of thiosalicylic acid stabilized gold nanoparticles, Spectrochim. Acta, Part A 74 (2009) 195-199.

DOI: 10.1016/j.saa.2009.06.002

Google Scholar

[26] R.M. Pattabi, M. Pattabi, Photoluminescence from gold nanoparticles stabilized with aromatic thiols (Unpublished work).

Google Scholar

[27] X.L. Guével, B. Hötzer, G. Jung, K. Hollemeyer, V. Trouillet, M. Schneider, Formation of Fluorescent Metal (Au, Ag) Nanoclusters Capped in Bovine Serum Albumin Followed by Fluorescence and Spectroscopy, J. Phys. Chem. Soc. C 115 (2011) 10955-10963.

DOI: 10.1021/jp111820b

Google Scholar

[28] G. Liu, Y. Shao, K. Ma, O. Cui, F. Wu, S. Xu, Synthesis of DNA-templated fluorescent gold nanoclusters, Gold Bull. 45 (2012) 69-74.

DOI: 10.1007/s13404-012-0049-6

Google Scholar

[29] G.W. Shu, C.C. Lin, H.P. Chung, J.L. Shen, C.A.J. Lin, C.H. Lee, W.H. Chang, W.H. Chan, H.H. Wang, H.I. Yeh, C.T. Yuan, J. Tang, Recombination dynamics of photoluminescence in thiol-protected gold nanoclusters, Appl. Phys. Lett. 95 (2009) 261911 (3pp).

DOI: 10.1063/1.3277184

Google Scholar

[30] T.N. Lin, C.H. Liu, G.W. Shu, C.A.J. Lin, W.H. Chang, H.H. Wang, H.I. Yeh, W.H. Chan, Site-selective photoluminescence in thiol-capped gold nanoclusters, Appl. Phys. Lett. 100 (2012) 103102 (4 pages).

DOI: 10.1063/1.3692575

Google Scholar

[31] C. Zhou, C. Sun, M. Yu, Y. Qin, J. Wang, M. Kim, J. Zheng, Luminescent Gold Nanoparticles with Mixed Valence States Generated from Dissociation of Polymeric Au(I) Thiolates, J. Phys. Chem. C 114 (2010) 7727-7732.

DOI: 10.1021/jp9122584

Google Scholar

[32] C.D. Geddes, A. Parfenov, I. Gryczynski, J.R. Lakowicz, Luminescent blinking of gold nanoparticles, Chem. Phys. Lett. 380 (2003) 269-272.

DOI: 10.1016/j.cplett.2003.07.029

Google Scholar

[33] L. Liu, H.-Z. Zheng, Z.-J. Zhang, Y.-M. Huang, S.-M. Chen, Y.-F. Hu, Photoluminescence from water-soluble BSA-protected gold nanoparticles, Spectrochim. Acta, Part A 69 (2008) 701-705.

DOI: 10.1016/j.saa.2007.05.022

Google Scholar

[34] D. Philip, Synthesis and spectroscopic characterization of gold nanoparticles, Spectrochim. Acta, Part A (2008), 71 (2008) 80-85.

Google Scholar

[35] H. Wang, T.B. Huff, D.A. Zweifel, W. He, P.S. Low, A. Wei, J.-X. Cheng, In vitro and in vivo two-photon luminescence imaging of single gold nanorods, PNAS 102 (2005) 15752-15756.

DOI: 10.1073/pnas.0504892102

Google Scholar

[36] M.B. Mohamed, V. Volkov, S. Link, M.A. El-Sayed, The `lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal, Chem. Phys. Lett. 317 (2000) 517-523.

DOI: 10.1016/s0009-2614(99)01414-1

Google Scholar

[37] M. Yorulmaz, S. Khatua, P. Zijlstra, A. Gaiduk, M. Orrit, Luminescence Quantum Yield of Single Gold Nanorods, Nano Lett. 12 (2012) 4385-4391.

DOI: 10.1021/nl302196a

Google Scholar

[38] K. Imura, T. Nagahara, H. Okamoto, Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes, J. Phys. Chem. B 109 (2005) 13214-13220.

DOI: 10.1021/jp051631o

Google Scholar

[39] H. Liao, W. Wen, G.K.L. Wong, Photoluminescence from Au nanoparticles embedded in Au:oxide composite films, J. Opt. Soc. Am. B: Opt. Phys. 23 (2006) 2518-2521.

DOI: 10.1364/josab.23.002518

Google Scholar

[40] A. Lin, D.H. Son, I.H. Ahn, G.H. Song, W.-T. Han, Visible to infrared photoluminescence from gold nanoparticles embedded in germano-silicate glass fiber, Opt. Express 15 (2007) 6374-6379.

DOI: 10.1364/oe.15.006374

Google Scholar

[41] M. Eichelbaum, B.E. Scmidt, H. Ibrahim, K. Rademan, Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers, Nanotechnology 18 (2007) 355702 (8pp).

DOI: 10.1088/0957-4484/18/35/355702

Google Scholar

[42] J. Zhang, Y. Fu, J.R. Lakowicz, Luminescent images of single gold nanoparticles and their labeling on silica beads, Optics Express 15 (2007) 13415-13420.

DOI: 10.1364/oe.15.013415

Google Scholar

[43] J. Zheng, R.M. Dickson, Individual Water-Soluble Dendrimer-Encapsulated Silver Nanodot Fluorescence, J. Am. Chem. Soc. 124 (2002) 13982-13983.

DOI: 10.1021/ja028282l

Google Scholar

[44] T. Huang, R.W. Murray, Luminescence of Tiopronin Monolayer-Protected Silver Clusters Changes To That of Gold Clusters upon Galvanic Core Metal Exchange, J. Phys. Chem. B 107 (2003) 7434-7440.

DOI: 10.1021/jp0276956

Google Scholar

[45] J. Gao, J. Fu, C. Lin, J. Lin, Y. Han, X. Yu, C. Pan, Formation and Photoluminescence of Silver Nanoparticles Stabilized by a Two-Armed Polymer with a Crown Ether Core, Langmuir 20 (2000) 9775-9779.

DOI: 10.1021/la049197p

Google Scholar

[46] Z. Jiang, W. Yuan, H. Pan, Luminescence effect of silver nanoparticle in water phase, Spectrochim. Acta, Part A 61 (2005) 2488-2494.

DOI: 10.1016/j.saa.2004.09.014

Google Scholar

[47] A. Alqudami, S. Annapoorni, Fluorescence From Metallic Silver and Iron Nanoparticles Prepared by Exploding Wire Technique, Plasmonics 2 (2007) 5-13.

DOI: 10.1007/s11468-006-9019-2

Google Scholar

[48] A. Abdullah, S. Annapoorni, Fluorescent silver nanoparticles via exploding wire technique, Pramana - J. Phys. 65 (2005) 815-819.

DOI: 10.1007/bf02704080

Google Scholar

[49] J. Xu, X. Han, H. Liu, Y. Hu, Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant, Colloids Surf. A 273 (2006) 179-183.

DOI: 10.1016/j.colsurfa.2005.08.019

Google Scholar

[50] D. Basak, S. Karan, B. Mallik, Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method, Chem. Phys. Lett. 420 (2006) 115-119.

DOI: 10.1016/j.cplett.2005.12.062

Google Scholar

[51] J. Zheng, Y. Ding, B. Tian, Z.L. Wang, X. Zhuang, Luminescent and Raman Active Silver Nanoparticles with Polycrystalline Structure, J. Am. Chem. Soc. 130 (2008) 10472-10473.

DOI: 10.1021/ja803302p

Google Scholar

[52] S.K. Tripathy, Colloids and Surfaces A: Physicochem. Eng. Aspects 331 (2008) 202-205.

Google Scholar

[53] A. Zhang, J. Zhang, Y. Fang, Photoluminescence from colloidal silver nanoparticles, J. Lumin. 128 (2008) 1635-1640.

DOI: 10.1016/j.jlumin.2008.03.014

Google Scholar

[54] L. Konig, I. Rabin, W. Schulze, G. Ertl, Chemiluminescence in the Agglomeration of Metal Clusters, Science 274 (1996) 1353-1355.

DOI: 10.1126/science.274.5291.1353

Google Scholar

[55] O.P. Siwach, P. Sen, Fluorescence properties of Ag nanoparticles in water, methanol and hexane, J. Lumin. 129 (2009) 6-11.

DOI: 10.1016/j.jlumin.2008.07.010

Google Scholar

[56] A. George, E.S. Shibu, S.M. Maliyekkal, M.S. Bootharaju, T. Pradeep, Luminescent, Freestanding Composite Films of Au15 for Specific Metal Ion Sensing, ACS Appl. Mater. Interfaces 4 (2012) 639-644.

DOI: 10.1021/am201292a

Google Scholar

[57] H. Liu, X. Zhang, X. Wu, L. Jiang, C. Burda, J.-J. Zhu, Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu (II) sensing, Chem. Commun. 47 (2011) 4237-4239.

DOI: 10.1039/c1cc00103e

Google Scholar

[58] H. Wei, Z. Wang, L. Yang, S. Tian, C. Hou, Y. Lu, Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor, Analyst 135 (2010) 1406-1410.

DOI: 10.1039/c0an00046a

Google Scholar

[59] H. He, C. Xie, J. Ren, Nonbleaching Fluorescence of Gold Nanoparticles and Its Applications in Cancer Cell Imaging, Anal. Chem. 80 (2008) 5951-5957.

DOI: 10.1021/ac8005796

Google Scholar

[60] Y.-C. Jao, M.-K. Chen, S.-Y. Lin, Enhanced quantum yield of dendrimer-entrapped gold nanodots by a specific ion-pair association and microwave irradiation for bioimaging , Chem. Commun. 46 (2010) 2626-2628.

DOI: 10.1039/b926364k

Google Scholar

[61] C. Zhou, M. Long, Y. Qin, X. Sun, J. Zheng, Luminescent Gold Nanoparticles with Efficient Renal Clearance, Angew. Chem. Int. Ed. 50 (2011) 3168-3172.

DOI: 10.1002/anie.201007321

Google Scholar

[62] C. Liu, X. Yang, H. Yuan, Z. Zhou, D. Xiao, Preparation of Silver Nanoparticle and Its Application to the Determination of ct-DNA, Sensors 7 (2007) 708-718.

DOI: 10.3390/s7050708

Google Scholar