[1]
K.C. Patil, S.T. Aruna, T. Mimani, Combustion synthesis: an update, Curr. Opinion. Solid State Mater. Sci. 6 (2002) 507-512.
DOI: 10.1016/s1359-0286(02)00123-7
Google Scholar
[2]
A. Varma, A.S. Mukasyan, K.T. Deshpande, P. Pranda, P.R. Erri, Mater. Res. Soc. Symp. Proc. 800 (2004) AA41. (http://journals.cambridge.org/abstract_S1946427400095269)
Google Scholar
[3]
A.S Mukasyan, P. Epstein, P. Dinka, Solution combustion synthesis of nanomaterials, Proc. Combustion Institute 31(2) (2007) 1789-1795.
DOI: 10.1016/j.proci.2006.07.052
Google Scholar
[4]
Poonam Sharma, Gurmeet Singh Lotey, Sukhpreet Singh, N. K. Verma, Solution-combustion: The versatile route to synthesize silver nanoparticles, J. Nanopart. Res. 13 (2011) 2553-2561
DOI: 10.1007/s11051-010-0148-3
Google Scholar
[5]
Y. Li, J. Zhao, L. Qiang, J. Jiang, Combustion synthesis of zinc ferrite powders in oxygen, J. Alloys Compd. 373 (2004) 298-303.
DOI: 10.1016/j.jallcom.2003.11.013
Google Scholar
[6]
S.R. Jain, K.C. Adiga, V.R.P. Verneker, A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures, Combustion Flame 40 (1981) 71-79.
DOI: 10.1016/0010-2180(81)90111-5
Google Scholar
[7]
S.T. Aruna, A.S. Mukasyan, Combustion synthesis and nanomaterials, Curr. Opin. Solid. State. Mater. Sci. 12 (2008) 44-50.
Google Scholar
[8]
L. A. Chick, L.R. Pederson, G.D. Maupin, J. L. Bates, L. E. Thomas, G.J. Exarhos, Glycine-nitrate combustion synthesis of oxide ceramic powders, Mater. Lett. 10 (1990) 6-12.
DOI: 10.1016/0167-577x(90)90003-5
Google Scholar
[9]
L.C. Nehru, V. Swaminathan, C. Sanjeeviraja, Rapid synthesis of nanocrystalline ZnO by a microwave-assisted combustion method, Powder Technol. 226 (2012) 29-33.
DOI: 10.1016/j.powtec.2012.03.042
Google Scholar
[10]
R.D. Purohit, S. Saha, A.K. Tyagi, Nanocrystalline ceria powders through citrate-nitrate combustion, J. Nanosci. Nanotechnol. 6 (2006) 209-214.
DOI: 10.1166/jnn.2006.17932
Google Scholar
[11]
C.-C. Hwang, T.-Y. Wu, Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method, Mater. Sci. Eng. B 111 (2004) 197-206.
DOI: 10.1016/s0921-5107(04)00203-x
Google Scholar
[12]
V.C. Sousa, A.M. Segadães, M.R. Morelli, R.H.G.A. Kiminami, Combustion synthesized ZnO powders for varistor ceramics, Int. J. Inorg. Mater. 1 (1999) 235-241.
DOI: 10.1016/s1466-6049(99)00036-7
Google Scholar
[13]
R.J. Sibey, R.A. Alberty, Physical Chemistry, third ed., Wiley, New York, NY, 2000.
Google Scholar
[14]
R.K. Selvan, C.O. Augustin, L. John Berchmans, R. Saraswathi, Combustion synthesis of CuFe2O4, Mater. Res. Bull. 38 (2003) 41-54.
DOI: 10.1016/s0025-5408(02)01004-8
Google Scholar
[15]
C.C. Hwang, C.-Y. Wu, J. Wan, J.-S. Tsai, Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders, Mater. Sci. Eng. B 111 (2004) 49-56.
DOI: 10.1016/j.mseb.2004.03.023
Google Scholar
[16]
Joint Committee on Powder Diffraction Standards (JCPDS) (JCPDS-ICDD), file number No.: 36-1451.
Google Scholar
[17]
A. Jegatha Christy, L.C. Nehru, M. Umadevi, A novel combustion method to prepare CuO nanorods and its antimicrobial and photocatalytic activities, Powder Technol. 235 (2013) 783-786.
DOI: 10.1016/j.powtec.2012.11.045
Google Scholar