Polyanilino-Carbon Nanotubes Derivatised Cytochrome P450 2E1 Nanobiosensor for the Determination of Pyrazinamide Anti-Tuberculosis Drugs

Article Preview

Abstract:

Pyrazinamine (PZA) is one of the most commonly prescribed anti-tuberculosis (anti-TB) drug due to its ability to significantly shorten the TB treatment period. However, excess PZA in the body causes hepatotoxicity and liver damage. This, therefore, calls for new methods for ensuring reliable dosing of the drug, which will differ from person to person due to interindividual differences in drug metabolism. A novel biosensor system for monitoring the metabolism of PZA was prepared with nanocomposite of multi-walled carbon nanotubes (MWCNTs), polyaniline (PANI) and cytochrome P450 3A4 (CYP3A4) electrochemically deposited on a glassy carbon electrode (GCE). The nanocomposite biosensor system exhibited enhanced electroactivity that is attributable to the catalytic effect of the incorporated MWCNTs. The biosensor had a sensitivity of 7.80 μA/μg mL-1 PZA and a dynamic linear range of 4.92 160 ng/mL PZA.

You have full access to the following eBook

Info:

* - Corresponding Author

[1] J. van den Boogaard, G.S. Kibiki, E.R. Kisanga, M.J. Boerre, R.E. Aarnoutse, New drugs against tuberculosis: problems, progress, and evaluation of agents in clinical development, Antimicrob. Agents Chemother. 53 (2010) 849-862.

DOI: 10.1128/aac.00749-08

Google Scholar

[2] T. Gumbo, C.S.W. Siyambalapitiyage Dona, C. Meek, R. Leff, Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs, Antimicrob. Agents Chemother. 53 (2009) 3197-3204.

DOI: 10.1128/aac.01681-08

Google Scholar

[3] Y.L. Janin, Antituberculosis drugs: ten years of research, Bioorg. Med. Chem. 15 (2007) 2479-2513.

Google Scholar

[4] F. Faridbod, M.R. Ganjali, E. Nasli-Esfahani, B. Larijani, S. Riahi, P. Norouz, Potentiometric sensor for quantitative analysis of pioglitazone hydrochloride in tablets based on theoretical studies, Int. J. Electrochem. Sci. 5 (2010) 880-894.

Google Scholar

[5] K. Grennan, A.J. Killard, C.J. Hanson. Optimisation and characterisation of biosensors based on polyaniline, Talanta 68 (2006) 1591-1600.

DOI: 10.1016/j.talanta.2005.08.036

Google Scholar

[6] N. Gospodinova, L. Terlemezyan. Conductive Polymers Prepared by Oxidative Polymerization: Polyaniline, Prog. Polym. Sci. 23 (1999) 1443-1484.

DOI: 10.1016/s0079-6700(98)00008-2

Google Scholar

[7] M. Matsuguchi, A. Okamoto, Y. Sakai. Effect of humidity on NH3 gas sensitivity of polyaniline blend films, Sens. Actuators, B 94 (2003) 46-52.

DOI: 10.1016/s0925-4005(03)00325-3

Google Scholar

[8] L. Zhang, P. Liu, Synthesis of hollow polyaniline nanoparticles with reactive template, Mater. Lett. 64 (2010) 1755-1757.

DOI: 10.1016/j.matlet.2010.04.042

Google Scholar

[9] M.D. Bedre, R. Deshpande, B. Salimath, V. Abbaraju, Preparation and characterization of polyaniline-CO3O4 nanocomposites via interfacial polymerization, Am. J. M. Sci. 2 (2012) 39-43.

DOI: 10.5923/j.materials.20120203.01

Google Scholar

[10] Drelinkiewicz, M. Hasik, M. Choczyn´ski, Preparation and properties of polyaniline containing palladium, Mater. Res. Bull. 33 (1998) 739-762.

DOI: 10.1016/s0025-5408(98)00042-7

Google Scholar

[11] T.H. Le, N.T. Trinh, L.H. Nguyen, H.B. Nguyen, V.A. Nguyen, D.L. Tran, T.D. Nguyen, Electrosynthesis of polyaniline–mutilwalled carbon nanotube nanocomposite films in the presence of sodium dodecyl sulfate for glucose biosensing, Adv. Nat. Sci. Nanosci. Nanotechnol. 4 (2013) 025014-025019.

DOI: 10.1088/2043-6262/4/2/025014

Google Scholar

[12] E.I. Iwuoha, D. Saenz de Villaverde, N.P. Garcia, M.R. Smyth, J.M. Pingarron, Reactivities of organic phase biosensors. 2. The amperometric behaviour of horseradish peroxidase immobilised on a platinum electrode modified with an electrosynthetic polyaniline film, Biosens. Bioelectron. 12 (1997) 747-761.

DOI: 10.1016/s0956-5663(97)00042-0

Google Scholar

[13] W. Li, Y. Zheng, X. Fu, J. Peng, L. Ren, P. Wang, W. Song, Electrochemical characterization of multi-walled carbon nanotubes/polyvinyl alcohol coated electrodes for biological applications, Int. J. Electrochem. Sci. 8 (2013) 5738-5754.

Google Scholar

[14] W. Wang, J. Chen. Tuberculosis of the head and neck: a review of 20 cases, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 107 (2009) 381-382.

DOI: 10.1016/j.tripleo.2008.11.002

Google Scholar

[15] Liu, K. Sun, J. Yang, D. Zhao, Toxicological effects of multi-wall carbon nanotubes in rats, J. Nanopart. Res. 10 (2008) 1303-1307.

DOI: 10.1007/s11051-008-9369-0

Google Scholar

[16] L. Ji,  L. Zhou,  X. Bai,  Y. Shao, G. Zhao, Y. Qu, C. Wang, Y. Li, Facile synthesis of multiwall carbon nanotubes/iron oxides for removal oftetrabromobisphenol A and Pb(II), J. Mater. Chem. 22 (2012) 15853-15862.

DOI: 10.1039/c2jm32896h

Google Scholar

[17] S.B. Kondawar, M.D. Deshpande, S.P. Agrawal, Transport properties of conductive polyaniline nanocomposites based on carbon nanotubes, International Journal of Composite Materials 2 (2012) 32-36.

DOI: 10.5923/j.cmaterials.20120203.03

Google Scholar

[18] K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, Electronics of conjugated polymers (I): polyaniline, Int. J. Electrochem. Sci. 7 (2012) 11859-11875.

Google Scholar

[19] E. Iwuoha, S.E. Mavundla, V.S. Somerset, L.F. Petrik, M.J. Klink, M. Sekota, P. Baker, Electrochemical and spectroscopic properties of fly ash- polyaniline matrix nanorod composite, Microchim. Acta 155 (2006) 453-458.

DOI: 10.1007/s00604-006-0584-z

Google Scholar

[20] M. Muchindu, E. Iwuoha, E. Pool, N. West, N. Jahed, P. Baker, T. Waryo, A. Williams, Electrochemical ochratoxin A immunosensor system developed on sulphonated polyaniline, Electroanalysis 23 (2011) 122-128.

DOI: 10.1002/elan.201000452

Google Scholar

[21] T. Mulaudzi, N. Ludidi, O. Ruzvidzo, M. Morse, N. Hendricks, E. Iwuoha, C. Gehring, Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett. 585 (2011) 2693-2697.

DOI: 10.1016/j.febslet.2011.07.023

Google Scholar

[22] E.I. Iwuoha, M.R. Smyth, Reactivities of organic phase biosensors: 6. square-wave and differential pulse studies of genetically engineered cytochrome P450cam (CYP101) bioelectrodes in selected solvents. Biosens. Bioelectron. 18 (2003) 237-244.

DOI: 10.1016/s0956-5663(02)00180-x

Google Scholar

[23] E. Iwuoha, F. Ngece, M. Klink, P. Baker, Amperometric responses of CYP2D6 drug metabolism nanobiosensor for sertraline: a selective serotonin reuptake inhibitor. IET Nanobiotechnol. 1 (2007) 62-67.

DOI: 10.1049/iet-nbt:20070005

Google Scholar

[24] M.Y. Khuhawar, F.M. Rind, Liquid chromatographic determination of isoniazid, pyrazinamide and rifampicin from pharmaceutical preparations and blood, J. Chromatogr. B 766 (2002) 357-63.

DOI: 10.1016/s0378-4347(01)00510-2

Google Scholar

[25] H. McIlleron, P. Wash, A. Burger, J. Norman, P.I. Folb, P. Smith, Determinants of rifampin, isoniazid, pyrazinamide and ethambutol pharmacokinetics in a cohort of tuberculosis patients, Antimicrob. Agents Chemother. 50 (2006) 1170-1177.

DOI: 10.1128/aac.50.4.1170-1177.2006

Google Scholar

[26] E. Nxusani, P.M. Ndangili, R.A. Olowu, A.N. Jijana, T. Waryo, N. Jahed, R.F. Ajayi, P. Baker, E. Iwuoha, 3-Mercaptopropionic acid capped Ga2Se3 nanocrystal-CYP3A4 biosensor for the determination of 17-alpha-ethinyl estradiol in water, Nano Hybrids 1 (2012) 1-22.

DOI: 10.4028/www.scientific.net/nh.1.1

Google Scholar

[27] P.N. Ndangili, A.M. Jijana, P.G.L. Baker, E.I. Iwuoha, 3-Mercaptopropionic acid capped ZnSe quantum dot-cytochrome P450 3A4 enzyme biotransducer for 17 beta-estradiol. J. Electroanal. Chem. 653(1-2) (2011) 67-74.

DOI: 10.1016/j.jelechem.2010.12.029

Google Scholar