Exfoliation of Graphene and its Application as Filler in Reinforced Polymer Nanocomposites

Article Preview

Abstract:

Recently, graphene has played a promising role due to its exceptional mechanical and thermal properties and the broad range of applications. This paper reviews the synthesis of graphene and its use as fillers in polymer nanocomposites. The nanocomposites prepared by different methods have the wide range of applications, such as in energy storage devices, biosensor applications, automotive industries and electronic industries. Graphene can be prepared by different methods, for example, mechanical exfoliation, chemical exfoliation, electrochemical exfoliation and Intercalation compound exfoliation. The electrochemical method is environmentally friendly, however, the chemical exfoliation method is cost effective and suitable for commercial production of graphene. In oxidation-reduction method, the oxidation of graphite starts at point’s defects and the temperature has great effects on oxidation of graphite, at low-temperature oxidation is sensitive to impurities and at high-temperature oxidation increases with increasing temperature. Graphene can be incorporated into the polymer matrix by different approaches, such as in situ polymerization, solution, costing method, electrodeposition, and click chemistry method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-21

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sun, D., et al., Journal of Power Sources, 2013. 222(0): pp.52-58.

Google Scholar

[2] Pan, Y., et al., Carbohydrate Polymers, 2011. 83(4): p.1908-(1915).

Google Scholar

[3] Jiang, Y., et al., Talanta, 2011. 85(1): pp.76-81.

Google Scholar

[4] Pham, T.A., N.A. Kumar, and Y.T. Jeong, Synthetic Metals, 2010. 160(17–18): p.2028-(2036).

Google Scholar

[5] Cuong, T.V., et al., Materials Letters, 2010. 64(6): pp.765-767.

Google Scholar

[6] Toh, S.Y., et al., Chemical Engineering Journal, 2014. 251: pp.422-434.

Google Scholar

[7] Mittal, V., A Review. Macromolecular Materials and Engineering, 2014. 299(8): pp.906-931.

Google Scholar

[8] Sreeprasad, T.S., et al., J Hazard Mater, 2011. 186(1): pp.921-31.

Google Scholar

[9] Whitener, K.E. and P.E. Sheehan, Graphene synthesis. Diamond and Related Materials, 2014. 46: pp.25-34.

DOI: 10.1016/j.diamond.2014.04.006

Google Scholar

[10] Dresselhaus, M.S. and G. Dresselhaus, Intercalation compounds of graphite. Advances in Physics, 2002. 51(1): pp.1-186.

DOI: 10.1080/00018730110113644

Google Scholar

[11] Wang, X.S., et al., Journal of Nanomaterials, (2013).

Google Scholar

[12] Li, L., et al., Chemical Engineering Journal, 2016. 284: pp.78-84.

Google Scholar

[13] Jayasena, B. and S.N. Melkote, Procedia Manufacturing, 2015. 1: pp.840-853.

Google Scholar

[14] Xu, J.S., et al., Journal of Colloid and Interface Science, 2014. 418: pp.37-42.

Google Scholar

[15] Dideykin, A., et al., Diamond and Related Materials, 2011. 20(2): pp.105-108.

Google Scholar

[16] Alaferdov, A.V., et al., Carbon, 2014. 69(0): pp.525-535.

Google Scholar

[17] Łoś, S., et al., Carbon, 2013. 55: pp.53-61.

Google Scholar

[18] Khan, U., et al., Carbon, 2012. 50(2): pp.470-475.

Google Scholar

[19] O'Neill, A., et al., The Journal of Physical Chemistry C, 2011. 115(13): pp.5422-5428.

Google Scholar

[20] Vadukumpully, S., J. Paul, and S. Valiyaveettil, Carbon, 2009. 47(14): pp.3288-3294.

DOI: 10.1016/j.carbon.2009.07.049

Google Scholar

[21] Qin, J.W., et al., Chemistry-a European Journal, 2014. 20(31): pp.9675-9682.

Google Scholar

[22] Park, J.S., et al., J Colloid Interface Sci, 2014. 417: pp.379-84.

Google Scholar

[23] Zhu, L., et al., Materials Chemistry and Physics, 2013. 137(3): pp.984-990.

Google Scholar

[24] Bourlinos, A.B., et al., Solid State Communications, 2009. 149(47–48): pp.2172-2176.

Google Scholar

[25] Hossain, M.M., et al., Materials Letters, 2014. 123: pp.90-92.

Google Scholar

[26] Tasis, D., et al., Materials Letters, 2013. 94(0): pp.47-50.

Google Scholar

[27] Pierson, H.O., Handbook of Carbon, Graphite, Diamonds and Fullerenes, H.O. Pierson, Editor. 1993, William Andrew Publishing: Oxford. pp.70-86.

DOI: 10.1016/b978-0-8155-1339-1.50009-8

Google Scholar

[28] Hahn, J.R., Carbon, 2005. 43(7): pp.1506-1511.

Google Scholar

[29] Xiaowei, L., R. Jean-Charles, and Y. Suyuan, Nuclear Engineering and Design, 2004. 227(3): pp.273-280.

DOI: 10.1016/j.nucengdes.2003.11.004

Google Scholar

[30] Xiao, T.T., et al., Journal of Materials Science-Materials in Electronics, 2014. 25(8): pp.3364-3374.

Google Scholar

[31] You, S.J., et al., Carbon, 2013. 52: pp.171-180.

Google Scholar

[32] Zhang, L., et al., Carbon, 2010. 48(8): pp.2367-2371.

Google Scholar

[33] Teng, X.Y., M.Q. Yan, and H. Bi, Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2014. 118: pp.1020-1024.

DOI: 10.1016/j.saa.2013.09.087

Google Scholar

[34] Park, Y.J., S.Y. Park, and I. In, Journal of Industrial and Engineering Chemistry, 2011. 17(2): pp.298-303.

Google Scholar

[35] Zhuo, Q.Q., et al., Carbon, 2013. 52: pp.559-564.

Google Scholar

[36] You, F., et al., Polymer International, 2014. 63(1): pp.93-99.

Google Scholar

[37] Zhou, X.J., et al., Journal of Physical Chemistry C, 2011. 115(24): pp.11957-11961.

Google Scholar

[38] Zhao, X.C., et al., Carbon, 2012. 50(10): pp.3497-3502.

Google Scholar

[39] Zhang, X.M., et al., Synthetic Metals, 2014. 193: pp.132-138.

Google Scholar

[40] Zhang, X.M., et al., Journal of Colloid and Interface Science, 2013. 409: pp.1-7.

Google Scholar

[41] Yang, S., et al., Rsc Advances, 2012. 2(23): pp.8827-8832.

Google Scholar

[42] Wang, X., et al., Electrochimica Acta, 2013. 111: pp.729-737.

Google Scholar

[43] Zhuo, D.X., et al., Journal of Nanomaterials, (2013).

Google Scholar

[44] Mishra, A.K. and S. Desalination, 2011. 282(0): pp.39-45.

Google Scholar

[45] Jabari Seresht, R., et al., Applied Surface Science, 2013. 276(0): pp.672-681.

Google Scholar

[46] Wang, X., et al., Carbon, 2014. 69(0): pp.101-112.

Google Scholar

[47] Bai, W.S., et al., Acs Applied Materials & Interfaces, 2014. 6(8): pp.5439-5449.

Google Scholar

[48] Wang, X. and X. Zhang, Electrochimica Acta, 2013. 112(0): pp.774-782.

Google Scholar

[49] Zhu, C.Z., et al., Nano Research, 2011. 4(7): pp.648-657.

Google Scholar

[50] Zhu, X.J., et al., Acs Nano, 2011. 5(4): pp.3333-3338.

Google Scholar

[51] Casero, E., et al., Electroanalysis, 2013. 25(1): pp.154-165.

Google Scholar

[52] Guo, H.L., et al., Acs Nano, 2009. 3(9): pp.2653-2659.

Google Scholar

[53] Yang, J. and S. Gunasekaran, Carbon, 2013. 51: pp.36-44.

Google Scholar

[54] Parvez, K., et al., J Am Chem Soc, 2014. 136(16): pp.6083-91.

Google Scholar

[55] Selvam, M., et al., Bulletin of Materials Science, 2013. 36(7): pp.1315-1321.

Google Scholar

[56] Satheesh, K. and R. Jayavel, Materials Letters, 2013. 113: pp.5-8.

Google Scholar

[57] Ramachandran, R., et al., Materials Research Bulletin, 2013. 48(10): pp.3834-3842.

Google Scholar

[58] Peng, X.Y., et al., Carbon, 2011. 49(11): pp.3488-3496.

Google Scholar

[59] Pokharel, P., Q.T. Truong, and D.S. Lee, Composites Part B-Engineering, 2014. 64: pp.187-193.

Google Scholar

[60] Wong, C.H.A., et al., Carbon, 2014. 77: pp.508-517.

Google Scholar

[61] Balakrishnaiah, R., et al., Materials Today: Proceedings, 2016. 3(1): pp.74-83.

Google Scholar

[62] Cao, S., et al., Applied Catalysis B: Environmental, 2015. 176–177: pp.500-512.

Google Scholar

[63] Botas, C., et al., Carbon, 2013. 52: pp.476-485.

Google Scholar

[64] Tanaka, H., S. Obata, and K. Saiki, Carbon, 2013. 59: pp.472-478.

Google Scholar

[65] Srinivas, G., et al., Synthetic Metals, 2010. 160(15-16): pp.1631-1635.

Google Scholar

[66] Prashanth, S.N., et al., Electrochimica Acta, 2014. 133: pp.49-56.

Google Scholar

[67] Park, S. and R.S. Ruoff, Nat Nanotechnol, 2009. 4(4): pp.217-24.

Google Scholar

[68] Cooper, A.J., et al., Carbon, 2014. 66(0): pp.340-350.

Google Scholar

[69] Morales, G.M., et al., Carbon, 2011. 49(8): pp.2809-2816.

Google Scholar

[70] Wang, Y.Y., et al., Journal of Materials Science, 2011. 46: p.3611.

Google Scholar

[71] Abbas, A.N., et al., Journal of the American Chemical Society, 2015. 137(13): pp.4453-4459.

Google Scholar

[72] Sánchez-Barriga, J., et al., Diamond and Related Materials, 2010. 19(7–9): pp.734-741.

Google Scholar

[73] Zhu, X.B., et al., Materials and Manufacturing Processes, 2015. 30(3): pp.335-339.

Google Scholar

[74] Zhang, X., et al., Acs Applied Materials & Interfaces, 2015. 7(2): pp.1057-1064.

Google Scholar

[75] Ren, F., et al., Applied Surface Science, (2014).

Google Scholar

[76] Yu, M., et al., Materials Research Bulletin, 2012. 47(11): pp.3206-3210.

Google Scholar

[77] Zhang, S.P., et al., Chinese Chemical Letters, 2014. 25(2): pp.355-358.

Google Scholar

[78] Li, J.H., et al., Journal of Materials Chemistry A, 2014. 2(18): pp.6359-6362.

Google Scholar

[79] Cai, X.S., et al., Journal of Materials Science, 2014. 49(16): pp.5667-5675.

Google Scholar

[80] Lian, M., et al., Polymer, 2014. 55(10): pp.2578-2587.

Google Scholar

[81] Ryu, S.H. and A.M. Shanmugharaj, Materials Chemistry and Physics, 2014. 146(3): pp.478-486.

Google Scholar

[82] Ryu, S.H. and A.M. Shanmugharaj, Chemical Engineering Journal, 2014. 244: pp.552-560.

Google Scholar

[83] Chen, S., J.W. Zhu, and X. Wang, Journal of Physical Chemistry C, 2010. 114(27): pp.11829-11834.

Google Scholar

[84] Fu, C.P., et al., Chemical Physics Letters, 2010. 499(4-6): pp.250-253.

Google Scholar

[85] Golsheikh, A.M., et al., Carbon, 2013. 62: pp.405-412.

Google Scholar

[86] Zhong, L.J., et al., Electrochimica Acta, 2013. 89: pp.222-228.

Google Scholar

[87] Yang, S.L., et al., Colloids and Surfaces B-Biointerfaces, 2012. 96: pp.75-79.

Google Scholar

[88] Zhou, Y.F., et al., Electrochemistry Communications, 2012. 22: pp.69-72.

Google Scholar

[89] Zhang, Q.X., et al., Talanta, 2012. 89: pp.391-395.

Google Scholar

[90] Feng, X.M., et al., Advanced Functional Materials, 2011. 21(15): pp.2989-2996.

Google Scholar

[91] Zhou, H.H., et al., Journal of Power Sources, 2014. 263: pp.259-267.

Google Scholar

[92] Lu, L.M., et al., Sensors and Actuators B-Chemical, 2013. 181: pp.567-574.

Google Scholar

[93] Yoo, M.J., et al., Carbon, 2014. 75: pp.149-160.

Google Scholar

[94] Asadinezhad, A., et al., Thermochimica Acta, 2014. 586: pp.17-24.

Google Scholar

[95] Chen, J.T., et al., Carbon, 2014. 75: pp.443-451.

Google Scholar

[96] Yang, H.J., et al., Industrial & Engineering Chemistry Research, 2014. 53(46): pp.17878-17883.

Google Scholar

[97] Guo, W.M. and G.H. Chen, Journal of Applied Polymer Science, 2014. 131(15).

Google Scholar

[98] Lin, T.Q., et al., Acs Applied Materials & Interfaces, 2014. 6(5): pp.3088-3092.

Google Scholar

[99] Meng, Q.S., et al., Nanotechnology, 2014. 25(12).

Google Scholar

[100] Mensah, B., et al., Journal of Applied Polymer Science, 2014. 131(16).

Google Scholar

[101] Tian, M., et al., Composites Science and Technology, 2014. 99: pp.37-44.

Google Scholar

[102] Wang, X., et al., Chemical Engineering Journal, 2014. 250: pp.214-221.

Google Scholar

[103] Zhou, K.Q., et al., Materials Research Bulletin, 2014. 53: pp.272-279.

Google Scholar

[104] Zhu, J., et al., Journal of Applied Polymer Science, 2014. 131(9).

Google Scholar

[105] Yang, L.L., et al., Journal of Materials Science, 2014. 49(5): pp.2372-2382.

Google Scholar

[106] Deetuam, C., et al., Composites Science and Technology, 2014. 93: pp.1-8.

Google Scholar

[107] Ryu, H.J., et al., European Polymer Journal, 2013. 49(9): pp.2627-2634.

Google Scholar

[108] Prolongo, S.G., et al., European Polymer Journal, 2014. 53: pp.292-301.

Google Scholar

[109] Stanier, D.C., et al., Composites Science and Technology, 2014. 95: pp.59-66.

Google Scholar