Synthesis and Characterization of Silver Nanoparticles Anchored on Montmorillonite via Chemical Reduction

Article Preview

Abstract:

Montmorillonite clay particles were decorated with silver (Ag) nanoparticles by chemical reduction of Ag nitrate with sodium citrate. X-ray diffraction (XRD) and energy dispersive X-ray spectrometry (EDS) confirmed the presence of metallic Ag on the surface of montmorillonite. The average crystallite size of the Ag nanoparticles obtained from the broadening of the 111 Ag peak ranged at 13-16 nm. On the other hand, the apparent particle sizes obtained from the SEM images were about 79-128 nm, suggesting that the nanoparticles are polycrystalline and possibly agglomerated. The increase in the concentration of reducing agent produced smaller Ag nanoparticles with narrower size distribution. The antibacterial test showed that the Ag nanoparticles, with mean size of 79 nm, adsorbed on montmorillonite were able to inhibit the growth of Staphylococcus aureus (S. aureus) with an antimicrobial index of 0.4.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-37

Citation:

Online since:

October 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Huy Tran, Van Quy Nguyen, and Anh-Tuan Le. Silver Nanoparticles: Synthesis, Properties, Toxicology, Applications and Perspectives., Advances in Natural Sciences: Nanoscience and Nanotechnology 4, no. 3 (2013): 1-20.

DOI: 10.1088/2043-6262/4/3/033001

Google Scholar

[2] Gao, Jie, Sejin Youn , Anna Hovsepyan , Verónica L. Llaneza , Yu Wang , Gabriel Bitton and Jean-Claude J. Bonzongo. Dispersion and toxicity of selected manufactured nanoaterials in natural river water samples., Environmental Science and Technology (2009).

DOI: 10.1021/es803315v

Google Scholar

[3] Hu, Wangyu, Shifang Xiao, Huiqiu Deng, Wenhua Luo, and Lei Deng. Thermodynamic Properties of Nano-Silver and Alloy Particles., Silver Nanoparticles (2010).

DOI: 10.5772/8512

Google Scholar

[4] Krutyakov, Yu A, A A Kudrinskiy, A Yu Olenin and G V Lisichkin. Synthesis and Properties of Silver Nanoparticles: Advances and Prospects., Russian Chemical Reviews (2008): 233-257.

DOI: 10.1070/rc2008v077n03abeh003751

Google Scholar

[5] Krutyakov Y A, K. A. Extracellular Biosynthesis and Antimicrobial Activity of Silver Nanoparticles., Russian Chemistry Review (2008): 233.

Google Scholar

[6] Ahamed, Maqusood, Mohamad S. AlSalhi, and M. K. J. Siddiqui. Silver Nanoparticle Applications and Human Health., Clinica Chimica Acta 411, no. 23-24 (2010): 1841-1848.

DOI: 10.1016/j.cca.2010.08.016

Google Scholar

[7] Wijnhoven, Susan W.P., Willie J.G.M. Peijnenburg, Carla A. Herberts, Werner I. Hagens, Agnes G. Oomen, Evelyn H. w. Heugens, Boris Roszek, Julia Bisschops, Ilse Gosens, Dik Van De Meent, Susan Dekkers, Wim H. De Jong, Maaike Van Zijverden, Adriënne J.A.M. Sips, and Robert E. Geertsma. Nano-silver – A Review of Available Data and Knowledge Gaps in Human and Environmental Risk Assessment., Nanotoxicology (2009).

DOI: 10.1080/17435390902725914

Google Scholar

[8] Moritz, Michał, and Małgorzata Geszke-Moritz. The Newest Achievements in Synthesis, Immobilization and Practical Applications of Antibacterial Nanoparticles., Chemical Engineering Journal 228 (2013): 596-613.

DOI: 10.1016/j.cej.2013.05.046

Google Scholar

[9] Prabhu, Sukumaran, and Eldho K Poulose. Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects., International Nano Letters (2012): 32.

DOI: 10.1186/2228-5326-2-32

Google Scholar

[10] Palza, Humberto. Antimicrobial Polymers with Metal Nanoparticles., International Journal of Molecular Sciences (2015): 2099-2116.

Google Scholar

[11] Park, Hee-Jin, Jee Yeon Kim, Jaeeun Kim, Joon-Hee Lee, Ji-Sook Hahn, Man Bock Gu, and Jeyong Yoon. Silver-ion-mediated Reactive Oxygen Species Generation Affecting Bactericidal Activity., Water Research 43 (2009): 1027-1032.

DOI: 10.1016/j.watres.2008.12.002

Google Scholar

[12] Kruis, Frank Einar. Synthesis of Nanoparticles in the Gas Phase for Function Applications., Habilitation, Gerhard-Mercator-Universität Duisburg, (2001).

Google Scholar

[13] Jung, Jae Hee, Hyun Cheol Oh, Hyung Soo Noh, Jun Ho Ji and Sang Soo Kim. Metal Nanoparticle Generation Using a Small Ceramic Heater with a Local Heating Area., Journal of Aerosol Science (2006): 1662-1670.

DOI: 10.1016/j.jaerosci.2006.09.002

Google Scholar

[14] Tien, Der-Chi, Kuo-Hsiung Tseng, Chih-Yu Liao, Jen-Chuen Huang and Tsing-Tshih Tsung. Discovery of Ionic Silver in Silver Nanoparticle Suspension Fabricated by Arc Discharge Method., Journal of Alloys and Compounds (2007) 408-411.

DOI: 10.1016/j.jallcom.2007.09.048

Google Scholar

[15] Sampol, Raúl Bola. Preparation of silver nanoparticles by laser ablation in water., (2014).

Google Scholar

[16] Turkevich, John, Peter Cooper Stevenson and James Hillier. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold., Discussions of the Faraday Society (1951): 55-75.

DOI: 10.1039/df9511100055

Google Scholar

[17] Shameli, Kaymar, Mansor Bin Ahmad, Mohsen Zargar, Wan Md Zin Wan Yunus, Abdolhossein Rustaiyan, and Nor Azowa Ibrahim. Synthesis of Silver Nanoparticles in Montmorillonite and their Antibacterial Behavior., International Journal of Nanomedicine (2011).

DOI: 10.2147/ijn.s13632

Google Scholar

[18] Sun, Yugang and Younan Xia. Shape-Controlled Synthesis of Gold and Silver Nanoparticles., Science 298, no. 5601 (2002): 2176-2179.

DOI: 10.1126/science.1077229

Google Scholar

[19] Praus, Petr, Martina Turicová, and Mariana Klementová. Preparation of Silver-Montmorillonite by Reduction with Formaldehyde and Borohydride., Journal of the Brazilian Chemical Society 20, no. 7 (2009): 1351-1357.

DOI: 10.1590/s0103-50532009000700021

Google Scholar

[20] Banach, M, Jolanta Pulit, Leszek Tymczyna and Anna Chmielowiec-Korzeniowska Preparation of Nanosilver via One-step Chemical Reduction in Aqueous Medium at Elevated Pressure., Chemik (2014): 111–116.

Google Scholar

[21] Kvitek, L., A. Panacek, R. Prucek, J. Soukupova, M. Vanickova, M. Kolar and R. Zboril. Antibacterial Activity AndToxicity of Silver – Nanosilver Versus Ionic Silver., Journal of Physics: Conference Series 304 (2011).

DOI: 10.1088/1742-6596/304/1/012029

Google Scholar

[22] Guzmán, Maribel G., Jean Dille and Stephan Godet Synthesis of Silver Nanoparticles by Chemical Reduction Method and their Antibacterial Activity., International Journal of Chemical and Biomolecular Engineering (2009).

Google Scholar

[23] Rao, Feng, Shaoxian Song, and Alejandro Lopez-Valdivieso. Synthesis and Characterization of Ag -PILC Through the Formation of Ag@Montmorillonite Nanocomposite., NANO: Brief Reports and Reviews 10. 2 (2015).

DOI: 10.1142/s1793292015500319

Google Scholar

[24] Delcour, Anne. Outer Membrane Permeability and Antibiotic Resistance., Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics (2010): 808-816.

DOI: 10.1016/j.bbapap.2008.11.005

Google Scholar

[25] Li, Wen-Ru, Xiao-Bao Xie, Qing-Shan Shi, Hai-Yan Zeng, You-Sheng OU-Yang and Yi-Ben Chen. Antibacterial Activity and Mechanism of Silver Nanoparticles on Escherichia coli., Applied Microbiology and Biotechnology (2009): 1115-1122.

DOI: 10.1007/s00253-009-2159-5

Google Scholar