Synthesis of Composites Based on Polyaniline-Modified Dispersed Nanocarbon Supports and Prospects of their Application as Sorbents

Article Preview

Abstract:

Pristine, catalyst-free and carboxylated carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) were modified with polyaniline via oxidative polymerization of aniline using ammonium persulfate. The effect of the nanocarbon support nature, degree of CNT functionalization and modification conditions on the specific surface area of the obtained composites was studied. Prospects of the application of the polyaniline-modified CNTs-and GNPs-based materials as sorbents for retention of different substances, including pathogenic organisms, were analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-141

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.S. Mansour, M.E. Ossman, H.A. Farag, Removal of Cd (II) ion from waste water by adsorption on polyaniline coated on sawdust, Desalination 272 (2011) 301-305.

DOI: 10.1016/j.desal.2011.01.037

Google Scholar

[2] Y. Liu, L. Chen, P. Wang, Y. Dong, Synthesis of magnetic polyaniline / graphene oxide composites and their application in the efficient removal of Cu (II) from aqueous solutions, J. Environ. Chem. Eng. 4 (2016) 825-834.

DOI: 10.1016/j.jece.2015.12.023

Google Scholar

[3] H. Yin, C. Wang, Q. Yan, Adsorption of Hg (II) from aqueous solutions by two aniline copolymers, Asian J. Chem. 24 (2012) 4901-4906.

Google Scholar

[4] D. Shao, C. Chen, Х. Wang, Application of polyaniline and multiwalled carbon nanotube magnetic composites for removal of Pb (II), Chem. Eng. J. 185-186 (2012) 144-150.

DOI: 10.1016/j.cej.2012.01.063

Google Scholar

[5] A. Olad, E.F. Azhar, Eco friendly biopolymer/clay/conducting polymer composite: Characterization its application in reactive dye removal, Fib. Polym. 15 (2014) 1321-1329.

DOI: 10.1007/s12221-014-1321-6

Google Scholar

[6] S. Debnath, N. Ballow, A. Maity, K. Pillay, Development of a polyaniline – lignocellulose composite for optimal adsorption of congo red, Int. J. Biolog. Macromol. 75 (2015) 199-209.

DOI: 10.1016/j.ijbiomac.2015.01.011

Google Scholar

[7] E. Gengec, Color removal from anaerobic/aerobic treatment effluent of backery yeast wastewater by polyaniline/beidellite composite materials, J. Environ. Chem. Eng. 3 (2015) 2484-2491.

DOI: 10.1016/j.jece.2015.09.009

Google Scholar

[8] L. Yang, S. Wu, J.P. Chen, Modification of activated carbon by polyaniline for enhanced adsorption of aqueous arsenate, Ind. Eng. Chem. Res. 46 (2007) 2133-2140.

DOI: 10.1021/ie0611352

Google Scholar

[9] J. Wang, X. Han, Y. Ji, H. Ma, Adsorption of Cr (VI) from aqueous solutions onto short-chain polyaniline/palygoskite composites, Desalin. Water Treat. 56 (2015) 356-365.

DOI: 10.1080/19443994.2014.935805

Google Scholar

[10] Y. Lin, D. Li, J. Hu, G. Xiao, J. Wang, W. Li, X. Fu, Highly efficient photocatalytic, degradation of organic pollutants by PANI-modified TiO2 composite, J. Phys. Chem. C 116 (2012) 5764-5772.

DOI: 10.1021/jp211222w

Google Scholar

[11] G. Sharma, D. Pathania, M. Maushad, N.C. Kothiyal, Fabrication, characterization and antimicrobial activity of polyaniline Th (IV) tundsmolybdphosphatenanocomposite material: Efficient removal of toxic metals ions from water, Chem. Eng. J. 251 (2014).

DOI: 10.1016/j.cej.2014.04.074

Google Scholar

[12] I. Yu. Sapurina, M.V. Ivanova, V.T. Ivanova, E.I. Burtsena, S.V. Trushakova, E.I. Isaeva, E.S. Kirilova, Ya.E. Kurochkina, A.A. Manykin, L.V. Uryvaev, Polyaniline and its composites as sorbents of influenza viruses, Polym. Sci. A 56 (2014).

DOI: 10.1134/s0965545x14040129

Google Scholar

[13] V.F. Ivanov, E.O. Garina, I. Yu. Sapurina, O.L. Gribkova, E.I. Burtseva, T.V. Ivanova, A.V. Vannikov, Sorption of flu viruses from aqueous media by composites of electrically conducting polymers: polyaniline and polypyrrol, Prot. Met. Phys. Chem. Surf. 52 (2016).

DOI: 10.1134/s2070205116020118

Google Scholar

[14] B. Qiu, C. Xu, D. Sun, Q. Wang, H. Gu, X. Zhang, B.L. Weeks, J. Hopper, T.C. Ho, Z. Guo, S. Wei, Polyaniline coating with various substrates for hexavalent chromium removal, Appl. Surf. Sci. 334 (2015) 7-14.

DOI: 10.1016/j.apsusc.2014.07.039

Google Scholar

[15] A.V. Melezhyk, A.V. Rukhov, E.N. Tugolukov, A.G. Tkachev, Some aspects of carbon nanotubes technology, Nanosyst. Chem Phys. Math. 20 (2013) 247-259.

Google Scholar

[16] A. Melezhyk, E. Galunin, N. Memetov, Obtaining graphene nanoplatelets from various graphite intercalation compounds, IOP C. Ser. Mater. Sci. Eng. 98 (2015) 012041 (1-9).

DOI: 10.1088/1757-899x/98/1/012041

Google Scholar

[17] T.P. Dyachkova, E.P. Redkzubova, Z.G. Leus, A.G. Tkachev, S.V. Blinov, A.V. Shuklinov, V.N. Druzhinina, The effect of modification with functionalized carbon nanotubes on polysulfone properties, Fundamentalnye issledovaniya [Fundamental Research] 8 (2013).

Google Scholar

[18] H.P. Boehm, Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon 32 (1994) 759-769.

DOI: 10.1016/0008-6223(94)90031-0

Google Scholar

[19] T. -M. Wu, Y. -W. Lin, Doped polyaniline / multi-walled carbon nanotube composites: Preparation, characterization and properties, Polymers 47 (2006) 3576-3582.

DOI: 10.1016/j.polymer.2006.03.060

Google Scholar

[20] D.A. Zilli, P.R. Bonelli, A.L. Cukierman, Effect of alignment on adsorption characteristics of self-oriented multi-walled carbon nanotube arrays, Nanotechnology 17 (2006), 5136–5141.

DOI: 10.1088/0957-4484/17/20/016

Google Scholar

[21] I.V. Anosova, T.P. Dyachkova, A.V. Rukhov, Studying the regularities of carboxilated multi-walled carbon nanotubes modification with polyaniline, Fundamental'nye i prikladnye problem techniki i technologii [Fundamental and Applied Problems of Engineering and Technology], 313 (2015).

Google Scholar

[22] T. Kar, S. Scheiner, A.K. Roy, The effect on acidity of size and shape of carboxylated single-wall carbon nanotubes. A DFT-SLDB study, Chem. Phys. Lett., 460 (2008), 225-229.

DOI: 10.1016/j.cplett.2008.06.007

Google Scholar