[1]
I.L. Molnar, W.P. Johnson, J.I. Gerhard, C.S. Willson, D.M. O'Carroll, Predicting colloid transport through saturated porous media: A critical review, Water Resour. Res. 51 (2015) 6804-6845.
DOI: 10.1002/2015wr017318
Google Scholar
[2]
S.M. Rodrigues, T. Trindade, A.C. Duarte, E. Pereira, G.F. Koopmans, P.F.A.M. Römkens, A framework to measure the availability of engineered nanoparticles in soils: Trends in soil tests and analytical tools / TrAC Trends in Analytical Chemistry. 75 (2016).
DOI: 10.1016/j.trac.2015.07.003
Google Scholar
[3]
A. Braun, E. Klumpp, R. Azzam, C. Neukum, Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam / Science of The Total Environment. 535 (2015) 102-112.
DOI: 10.1016/j.scitotenv.2014.12.023
Google Scholar
[4]
T.K. Darlington, A.M. Neigh, M.T. Spencer, O.T.N. Guyen, J.S. Oldenburg, Nanoparticle characteristics affecting environmental fate and transport through soil / Environmental Toxicology and Chemistry. 28 (2009) 1191-1199.
DOI: 10.1897/08-341.1
Google Scholar
[5]
J. Fang, M. -h. Wang, D. -h. Lin, B. Shen, Enhanced transport of CeO2 nanoparticles in porous media by macropores / Science of The Total Environment. 543 (2016) 223-229.
DOI: 10.1016/j.scitotenv.2015.11.039
Google Scholar
[6]
J. Fanga, X. -q. Shana, B. Wena, J. -m. Lina and G. Owens, Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns / Environmental Pollution. 157 (2009) 1101-1109.
DOI: 10.1016/j.envpol.2008.11.006
Google Scholar
[7]
D.P. Jaisi, M. Elimelech, Single-Walled Carbon Nanotubes Exhibit Limited Transport in Soil Columns Environ / Environmental Science Technology. 43 (2009) 9161-9166.
DOI: 10.1021/es901927y
Google Scholar
[8]
S. Lakshmanan, W.M. Holmes, W.T. Sloan, V.R. Phoenix, Nanoparticle transport in saturated porous medium using magnetic resonance imaging / Chemical Engineering Journal. 266 (2015) 156-162.
DOI: 10.1016/j.cej.2014.12.076
Google Scholar
[9]
T. Rahman, H. Millwater, H.J. Shipley, Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration / Science of the Total Environment. 499 (2014).
DOI: 10.1016/j.scitotenv.2014.08.073
Google Scholar
[10]
S. Sammartino, A. -S. Lissy, C. Bogner, R.V.D. Bogaert, Y. Capowiez, S. Ruy, S. Cornu, Identifying the functional macropore network related to preferential flow in structured soils / Vadose Zone J. 14 (2015).
DOI: 10.2136/vzj2015.05.0070
Google Scholar
[11]
P. Sun, A. Shijirbaatar, J. Fang, G. Owens, D. Lin, K. Zhang, Distinguishable Transport Behavior of Zinc Oxide Nanoparticles in Silica Sand and Soil Columns / Science of the Total Environment. 505 (2015) 189-198.
DOI: 10.1016/j.scitotenv.2014.09.095
Google Scholar
[12]
D. Wang, C. Su, W. Zhang, X. Hao, L. Cang, Y. Wang, D. Zhou, Laboratory assessment of the mobility of water–dispersed engineered nanoparticles in a red soil (Ultisol) / Journal of Hydrology. 519 (2014) 1677-1687.
DOI: 10.1016/j.jhydrol.2014.09.053
Google Scholar
[13]
R. Zhang, H. Zhang, C. Tu, X. Hu, L. Li, Y. Luo, P. Christie, Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions / Journal of Nanoparticle Research. 17 (2015).
DOI: 10.1007/s11051-015-2972-y
Google Scholar
[14]
T. Astafurova, A. Zotikova, Y. Morgalev, G. Verkhoturova, V. Postovalova, S. Kulizhskiy, S. Mikhailova, Effect of platinum nanoparticles on morphological parameters of spring wheat seedlings in a substrate-plant system / IOP Conference Series: Materials Science and Engineering. 98 (2015).
DOI: 10.1088/1757-899x/98/1/012004
Google Scholar
[15]
T. Morgaleva, Y. Morgalev, I. Gosteva, S. Morgalev, Research of nickel nanoparticles toxicity with use of Aquatic Organisms / IOP Conference Series: Materials Science and Engineering. 98 (2015).
DOI: 10.1088/1757-899x/98/1/012012
Google Scholar
[16]
IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.
DOI: 10.1007/springerreference_76722
Google Scholar
[17]
S.P. Kulizhsky, S.V. Loiko, A.O. Konstantinov, I.V. Kritskov, G.I. Istigechev, A.G. Lim, D.M. Kuzmina, Lithological sequence of soil formation on the low terraces of the Ob and the Tom rivers in the south of Tomsk Oblast / International Journal of Environmental Studies. 72 (2015).
DOI: 10.1080/00207233.2015.1039346
Google Scholar
[18]
S.V. Loiko, L.I. Geras'ko, S.P. Kulizhskii, I.I. Amelin, G.I. Istigechev, Soil cover patterns in the northern part of the area of aspen-fir taiga in the southeast of Western Siberia / Eurasian Soil Science. 48 (2015) 359-372.
DOI: 10.1134/s1064229315040067
Google Scholar