Influence of Nickel Nanoparticles on Biological Activity of Humus Layer of Subboreal Forest

Article Preview

Abstract:

For the first time studied the influence of nickel nanoparticles (Ni NPs) on the integrated index of biological activity of humus soil horizons in subboreal forest after treating with a 5.0 mg/l dispersion of nanoparticles. Adding nickel nanoparticle dispersion into the soil was carried out in filtration columns. Treatment of humus soils with Ni NPs has been established to decrease total microbial number to 50 % - 65 % in CFU, stimulate nitrification in all soil samples and a suppression of nitrogen fixation in loam soils Model tests on agar media with pure cultures of Pseudomonas fluorescens and Candida sp. showed varied sensitivity of different systematic groups to nickel nanoparticles. No positive CFU decrease of Pseudomonas fluorescens was found. However, in respect to certain concentrations of Ni NPs in an experiment with Candida sp., a marked decrease of CFU was observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-114

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Shamaila, H. Wali, R. Sharif, J. Nazir, N. Zafar et al, Antibacterial effects of laser ablated Ni nanoparticles, Appl. Phys. Lett. 103 (2013) 153701.

DOI: 10.1063/1.4824331

Google Scholar

[2] P.R. Chetana, M.N. Somashekar, B.S. Srinatha, R.S. Policegoudra, S.M. Aradhya, R. Rao, Synthesis, Crystal Structure, Antioxidant, Antimicrobial, and Mutagenic Activities and DNA Interaction Studies of Ni(II) Schiff Base 4-Methoxy-3-benzyloxybenzaldehyde Thiosemicarbazide Complexes, Inorg. Chem. 2013 (2013).

DOI: 10.1155/2013/250791

Google Scholar

[3] L.W. Xue, X.W. Li, G.Q. Zhao, W.C. Yang, Synthesis, structures, and antimicrobial activity of nickel(II) and zinc(II) complexes with Schiff bases derived from 3-bromosalicylaldehyde, Russian J. Coord. Chem. 39 (12) (2013) 872-876.

DOI: 10.1134/s1070328413110092

Google Scholar

[4] P.B. Koli, K.H. Kapadnis, Synthesis, Characterization & Antimicrobial Activity of Mixed Metal Oxides of Iron Cobalt Nickel and Zinc, Int. J. Chem. and Phys. Sci. 4 (2015) ISSN: 2319-6602.

Google Scholar

[5] A.K. Horst, Antimicrobial effects of metal oxide nanoparticles, In The 2009 Research Accomplishments. Ithaca: NNIN. (2009) 12–13.

Google Scholar

[6] H. Kumar, R. Rani, R. Salar, Reverse Micellar Synthesis, Characterization and antibacterial study of nickel nanoparticles, Adv. in Control, Chem., Civil and Mechanical Eng. 17 (2010) 88-94.

Google Scholar

[7] M. Kokkoris, C.C. Trapalis, S. Kossionides, R. Vlastouc, B. Nsouli, R. Grotzschel, S. Spartalis, G. Kordas, Th. Paradellis, RBS and HIRBS studies of nanostructured AgSiO2 sol–gel thin coatings, Nucl. Instrum. Meth. B. 188 (2002) 67-72.

DOI: 10.1016/s0168-583x(01)01020-5

Google Scholar

[8] Y. Ge, J.P. Schimel, P.A. Holden, Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities, Environ. Sci. Technol. 45 (2011) 1659-1664.

DOI: 10.1021/es103040t

Google Scholar

[9] Y. Ge, J.P. Schimel, P.A. Holden, Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles, Appl. Environ. Microbiol. 78 (2012) 6749-6758.

DOI: 10.1128/aem.00941-12

Google Scholar

[10] Y. Ge, J.H. Priester, L.C. van der Werfhorst, S.L. Walker, R.M. Nisbet, Y. -J. An, J.P. Schimel, J.L. Gardea-Torresdey, P.A. Holden, Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities, Environ. Sci. Technol. 48 (2014).

DOI: 10.1021/es5031646

Google Scholar

[11] W. Du, Y. Sun, R. Ji, J. Zhu, J. Wu, H. Guo, TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil, J. Env. Monitor. 13 (2011) 822-828.

DOI: 10.1039/c0em00611d

Google Scholar

[12] S. Kim, J. Kim, I. Lee, Effects of Zn and ZnO nanoparticles and Zn2+ on soil enzyme activity and bioaccumulation of Zn in Cucumis sativus, Chem. Ecol. 27 (2011) 49–55.

DOI: 10.1080/02757540.2010.529074

Google Scholar

[13] H. Chai, J. Yao, J. Sun, C. Zhang, W. Liu, M. Zhu, B.C. Bull, The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil, Env. Contam. Toxicol. 94 (2015) 490–495.

DOI: 10.1007/s00128-015-1485-9

Google Scholar

[14] A.F. Vadyunina, Z.A. Korchagin, Methods of study of the physical properties of soils, Agropromizdat, Moscow, (1986).

Google Scholar

[15] S. Kulizhsky, S. Loyko, A. Lim, Pedotransfer capacity of nickel and platinum nanoparticles in Albeluvisols Haplic in the South-East of the Western Siberia, Eurasian Soil Sci+. 2 (2) (2013) 90-96.

Google Scholar

[16] D.G. Zvjagincev, Methods of Soil Microbiology and Biochemistry, Moscow, MSU, (1991).

Google Scholar

[17] N.S. Egorova, Practicum in Microbiology, Moscow, University Press, (1976).

Google Scholar

[18] V.A. Svetlichny, T.I. Izaak, O.V. Babkina, A.V. Shabalina, Synthesis of metal nanoparticles by laser ablation of solids in liquids nanosecond 2nd harmonic Nd-YAG laser, News of Higher Schools. Physics. 52 (12/2) (2009) 110-115.

Google Scholar

[19] I.V. Lushchaeva, Y.N. Morgalev, Effect of platinum nanoparticles on biological activity of humus-accumulated horizons, Adv. Mater. Res. 1085 (2015) 384-389.

DOI: 10.4028/www.scientific.net/amr.1085.384

Google Scholar

[20] Y.N. Morgalev, T.G. Morgaleva, E.S. Gulik, G.A. Borilo, U.A. Bulatova, S.Y. Morgalev, E.V. Ponyavina, N.S. Khoch, Biotesting nanomaterials: transmissibility of nanoparticles into a food chain, Nanotechno. in Russia. 5 (11) (2010) 851-856.

DOI: 10.1134/s1995078010110157

Google Scholar