[1]
A. Stephenson, T. McCaskey, B. Ruffin, A survey of broiler litter composition and potential value as a nutrient resource. Biological Wastes. 34 (1990) 1–9.
DOI: 10.1016/0269-7483(90)90139-j
Google Scholar
[2]
K. Kuczewski, J. Lomotowski, Composts based on poultry manure. Wyd. Akademii Rolniczej. Wroclaw. (2002) 7–26.
Google Scholar
[3]
E. Hayes, A. Leek, T. Curran, V. Dodd, O. Carton, V. Beattie, O. Doherty, The influence of diet crude protein level on odour and ammonia emission from finishing pig houses. Bioresource Technology. 91 (2004) 309–315.
DOI: 10.1016/s0960-8524(03)00184-6
Google Scholar
[4]
K. Persaud, S. Khaffaf, P. Hobbs, R. Sneath, Assessment of conducting polimer odour sensors for agricultural malodour measurements. Chemical Senses. 21 (1996) 495–505.
DOI: 10.1093/chemse/21.5.495
Google Scholar
[5]
M. Banach, L. Tymczyna, A. Chmielowiec-Korzeniowska, J. Pulit-Prociak, Nanosilver Biocidal Properties and Their Application in Disinfection of Hatchers in Poultry Processing Plants. Bioinorganic Chemistry and Applications. (2016).
DOI: 10.1155/2016/5214783
Google Scholar
[6]
L. Tymczyna, L. Saba, H. Malec, A. Mainska, Ocenasteezenia odorow w procesie inkubacji jaj kurzych. Roczniki Naukowe Zootechniki. 27 (2000) 229–237.
Google Scholar
[7]
L. Tymczyna, A. Mainska, H. Malec, L. Saba, Ocenaemisji merkaptanow w procesie inkubacji jaj. Annales Universitatis Mariae Curie-Sklodowska. 29 (2000) 223–229.
Google Scholar
[8]
A. Chmielowiec-Korzeniowska, L. Tymczyna, Cz. Sko ́rska, J. Sitkowska, G. Cholewa, and J. Dutkiewicz, Efficacy of novel biofilter in hatchery sanitation: I. Removal of airborne, dustand endotoxin. Annals of Agricultural and Environmental Medicine. 13 (2006).
Google Scholar
[9]
L. Tymczyna, A. Chmielowiec-Korzeniowska, Redukcja zanieczyszczen powietrza w wyleegarni pisklaat przy zastosowaniu biofiltra zamknieetego, Zywienie a zdrowie zwierzaat oraz aktualne problemy higieny i prewencji weterynaryjnej. Conference held in Ciechocinek, Poland. (2003).
Google Scholar
[10]
L. Tymczyna, A. Drabik, A. Chmielowiec-Korzeniowska, Proba redukcji aldehydow i ketonow na zlozach bio ltracyjnych w wylęgarni pisklat. Annales Universitatis Mariae Curie-Sklodowska, 44 (2004) 333–338.
Google Scholar
[11]
L. Tymczyna, A. Chmielowiec-Korzeniowska, A. Drabik, The effectiveness of various biofiltration substrates in removing bacteria, endotoxins, and dust from ventilation system exhaust from a chicken hatchery. Poultry Science. 10 (2007) 2095–2100.
DOI: 10.1093/ps/86.10.2095
Google Scholar
[12]
A. Chmielowiec-Korzeniowska, L. Tymczyna, A. Drabik, Use of organic and mineral materials for biofiltration of air in hatcheries. Annals of Animal Science. 7 (2007) 153–162.
Google Scholar
[13]
E. Epstein, The Science of Composting. Technomic Publication, Lancaster, PA, (1997).
Google Scholar
[14]
K. Lasaridi, I. Protopapa, M. Kotsou, G. Pilidis, T. Manios, A. Kyriacou, Quality assessment of composts in the Greek market: the need for standards and quality assurance. J Environ Manag. 80 (2006) 56–65.
DOI: 10.1016/j.jenvman.2005.08.011
Google Scholar
[15]
P. Dees, W. Ghiorse, Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol. 37 (2001) 207–216.
DOI: 10.1111/j.1574-6941.2001.tb00805.x
Google Scholar
[16]
H. Takaku, S. Kodaira, A. Kimoto, M. Nashimoto, M. Takagi, Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and independent approaches. J Biosci Bioeng. 101 (2006) 42–50.
DOI: 10.1263/jbb.101.42
Google Scholar
[17]
P. Strom, Identification of thermophilic bacteria in solidwaste composting. Appl Environ Microbiol. 50 (1985) 906–913.
DOI: 10.1128/aem.50.4.906-913.1985
Google Scholar
[18]
I. Tiago, I. Teixeira, S. Silva, P. Chung, A. Veríssimo, C. Manaia, Metabolic and genetic diversity of mesophilic and thermophilic bacteria isolated from composted municipal sludge on poly-ɛ-caprolactones. Curr Microbiol 49 (2004) 407–414.
DOI: 10.1007/s00284-004-4353-0
Google Scholar
[19]
I. Vaz-Moreira, M. Silva, C. Manaia, O. Nunes, Diversity of Bacterial Isolates from Commercial and Homemade Composts Microb Ecol. 55 (2008) 714-722.
DOI: 10.1007/s00248-007-9314-2
Google Scholar
[20]
K. Matusiak, S. Borowski1, S. Opalinski, T. Bakula, R. Kolacz, B. Gutarowska, Impact of a microbial-mineral biopreparation on microbial community and deodorization of manures Biological Wastes. 62 (2015) 791–798.
DOI: 10.18388/abp.2015_1135
Google Scholar
[21]
J. Thurston-Enriquez, J. Gilley, B. Eghball, Microbial quality of runnof following land application of cattle manure and swine slurry. Journal of Water and Health 3 (2005) 157–169.
DOI: 10.2166/wh.2005.0015
Google Scholar
[22]
F. Nicholson, S. Groves, B. Chambers, Pathogen survival during livestock manure storage and following land application. Bioresource Technology. 96 (2005) 135–143.
DOI: 10.1016/j.biortech.2004.02.030
Google Scholar
[23]
J. Soller, T. Bartrand, J. Ravenscroft, Estimated human health risks from recreational exposures to stormwater runoff containing animal faecal material. Environmental modelling & software. 72 (2015) 21-32.
DOI: 10.1016/j.envsoft.2015.05.018
Google Scholar
[24]
L. Tymczyna, A. Chmielowiec-Korzeniowska, A. Drabik, The effectiveness of various biofiltration substrates in removing bacteria, endotoxins, and dust from ventilation system exhaust from a chicken hatchery. Poultry Science. 10 (2007) 2095–2100.
DOI: 10.1093/ps/86.10.2095
Google Scholar
[25]
L. Tymczyna, A. Chmielowiec-Korzeniowska, A. Drabik et al., Efficacy of novel biofilter in hatchery sanitation: II. Removal of odorogenous pollutants. Annals of Agricultural and Environmental Medicine. 213 (2006) 39–246.
Google Scholar
[26]
D. Stępień-Pyśniak, A. Kolasa, J. Rzedzicki, Occurrence of gram-negative bacteria in henseggs depending on their source and storage conditions. Polish Journal of Veterinary Sciences. 13 (2008) 507–513.
Google Scholar
[27]
A. Emamifar, M. Kadivar, M. Shahedi, S. Soleimanian-Zad, Effect of nanocomposite packaging containing Ag and ZnO on inactivation of Lactobacillus plantarum in orange juice. Food Control. 22 (2011) 408–413.
DOI: 10.1016/j.foodcont.2010.09.011
Google Scholar
[28]
O. Choi, K. Deng, N. Kim, L. Ross, R. Surampalli, Z. Hu, Eninhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42 (2008) 3066–3074.
DOI: 10.1016/j.watres.2008.02.021
Google Scholar
[29]
J. Cason, D. Jackson, E. Lowbury, C. Ricketts, Antiseptic and aseptic prophylaxis for burns: use of silver nitrate and of isolators. Br Med J. 2 (1996) 1288–1294.
DOI: 10.1136/bmj.2.5525.1288
Google Scholar
[30]
S. Porel, D. Ramakrishna, E. Hariprasad, A. Gupta, T. Radhakrishnan, Polymer thin film with in situ synthesized silver nanoparticles as a potent reusable bactericide. Curr Sci. 101 (2011) 927–933.
Google Scholar
[31]
M. Metak, T. Ajaal, Investigation on polymer based nano-silver as food packaging materials. International Journal of Biological, Food, Veterinary and Agricultural Engineering. 12 (2012) 772–778.
Google Scholar
[32]
J. Fong, F. Wood, Nanocrystalline silver dressings in wound management: a review. International Journal of Nanomedicine. 4 (2006) 441–449.
DOI: 10.2147/nano.2006.1.4.441
Google Scholar
[33]
J. Wright, K. Lam, D. Hansen, R. Burrell, Efficacy of topical silver against fungal burn wound pathogens. American Journal of Infection Control. 4 (1999) 344–350.
DOI: 10.1016/s0196-6553(99)70055-6
Google Scholar
[34]
S. Niakan, M. Niakan, S. Hesaraki et al., Comparison of the antibacterial effects of nanosilver with 18 antibiotics on multidrug resistance clinical isolates of Acinetobacter baumannii. Jundishapur Journal of Microbiology. 5 (2013).
DOI: 10.5812/jjm.8341
Google Scholar
[35]
M. Niakan, H. R. Azimi, Z. Jafarian, G. Mohammadtaghi, S. Niakan, S. Mostafavizade, Evaluation of nanosilver solution stability against Streptococcus mutans, Staphylococcus aureus andPseudomonas aeruginosa. Jundishapur Journal of Microbiology. 6 (2013).
DOI: 10.5812/jjm.8570
Google Scholar
[36]
W. Li, X. Xie, Q. Shi, H. Zeng, Y. Ou-Yang, Y. Chen, Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Applied Microbiology and Biotechnology. 4 (2010) 1115–1122.
DOI: 10.1007/s00253-009-2159-5
Google Scholar
[37]
E. Petrus, S. Tinakumari, L. Chai et al., A study on the minimum inhibitory concentration and minimum bactericidal concentration of nano colloidal silver on food-borne pathogens. International Food Research Journal. 18 (2011) 55–66.
Google Scholar
[38]
S. Shahrokh, G. Emtiazi, Toxicity and unusual biological behavior of nanosilver on gram positive and negative bacteria assayed by microtiter-plate. European Journal of Biological Sciences. 3 (2009) 28–31.
Google Scholar
[39]
V. Juneja, B. Marmer, Thermal inactivation of Clostridium perfringens vegetative cells in ground beef and turkey as affected by sodium pyrophosphate. Food Microbiology. 3 (1998) 281–287.
DOI: 10.1006/fmic.1997.0173
Google Scholar
[40]
M. Lotfi, S. Vosoughhosseini, B. Ranjkesh, S. Khani, M. Saghiri, V. Zand, Antimicrobial efficacy of nanosilver, sodium hypochlorite and chlorhexidine gluconate against Enterococcus faecalis. African Journal of Biotechnology. 35 (2011) 6799–6803.
Google Scholar
[41]
M. Zarei, A. Jamnejad, and E. Khajehali, Antibacterial effect of silver nanoparticles against four foodborne pathogens. Jundishapur Journal of Microbiology. 1 (2015).
DOI: 10.5812/jjm.8720
Google Scholar
[42]
M. Gholami-Ahangaran, M. Firouzabadi, M. Firouzabadi, Evaluation of antiseptic role of one nanosilver based drug as a new therapeutic method for treatment of bumblefoot in pheasant (Phasianus colchicus). Global Veterinaria. 1 (2012) 73–75.
Google Scholar
[43]
L. Cheng, K. Zhang, M. Weir, H. Liu, X. Zhou, H. Xu, Effects of antibacterial primers with quaternary ammonium and nano-silver on Streptococcus mutans impregnated in human dentin blocks. Dental Materials. 4 (2011) 462–472.
DOI: 10.1016/j.dental.2013.01.011
Google Scholar
[44]
N. Naghsh, M. Safari, P. Hajmehrabi, Comparison of nanosilver inhibitory effects growth between Aspergillus niger and E. coli. Indian Journal of Science and Technology. 3 (2012) 2448–2450.
DOI: 10.17485/ijst/2012/v5i3.33
Google Scholar
[45]
K. Kim, W. Sung, S. Moon, J. Choi, J. Kim, D. Lee, Antifungal effect of silver nanoparticles on dermatophytes. Journal of Microbiology and Biotechnology. 8 (2008) 1482–1484.
Google Scholar
[46]
S. Schiffman, Livestock odors: implications for human health and well-being. Journal of Animal Science. 5 (1998) 1343–1355.
DOI: 10.2527/1998.7651343x
Google Scholar
[47]
G. Golueke, B. Card, P. McGauhey, A critical evaluation of inoculums in composting. Appl Microbiol. 2 (1954) 45-53.
DOI: 10.1128/am.2.1.45-53.1954
Google Scholar
[48]
Certificate of authorship. №1272647. USSR. Sposod sinteza serebra / Sidorin, YU. YU.; published 29 October (1984).
Google Scholar
[49]
A. Piskaeva, Yu. Sidorin, L. Dyshlyuk, Yu. Zhumaev, A. Prosekov, Research on the influence of silver clusters on decomposer microorganisms and e. coli bacteria, Foods and Raw materials. 1 (2014) 62-66.
DOI: 10.12737/4136
Google Scholar
[50]
A. Piskaeva, L. Dyshlyuk, Yu. Sidorin, M. Zimina, Analysis and Selection of the Ion Concentrations and the Cluster of Silver for Microorganisms-Destructors Bacillus fastidiosus, Lactobacillus sp., Microbacterium terregens. Storage and processing of agricultural raw materials. 9 (2014).
Google Scholar
[51]
M. Andrews, Determination of minimum inhibitory concentrations. J. Chemother. 48 (2001) 5-16.
Google Scholar