[1]
G. Zu, J. Shen, W. Wang, L. Zou, Y. Lian and Z. Zhang, Silica–titania composite aerogel photocatalysts by chemical liquid deposition of titania onto nanoporous silica scaffolds, ACS Appl. Mater. Interfaces. 7 (2015) 5400–5409.
DOI: 10.1021/am5089132
Google Scholar
[2]
B.Y. Yu and S. -Y. Kwak, Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts, J. Mater. Chem. 22 (2012) 8345–8353.
DOI: 10.1039/c2jm16931b
Google Scholar
[3]
Y. Zhang, L. Jin, K. Sterling, Z. Luo, T. Jiang, R. Miao, C. Guild and S.L. Suib, Potassium modified layered Ln2O2CO3 (Ln: La, Nd, Sm, Eu) materials: efficient and stable heterogeneous catalysts for biofuel production, Green Chem. 17 (2015).
DOI: 10.1039/c4gc02429j
Google Scholar
[4]
Majzik E. S., Tóth F., Benke L. and Kiss Z., SPE-LC-MS-MS determination of phenoxy acid herbicides in surface and ground water, Chroma. 63 (2006) S105-S109.
DOI: 10.1365/s10337-006-0786-x
Google Scholar
[5]
Barbash J., Thelin G., Kolpin D. and Gilliom R., Major herbicides in ground water: results from the National Water-Quality Assessment, J. Environ. Qual. 30 (2001) 831-845.
DOI: 10.2134/jeq2001.303831x
Google Scholar
[6]
Gupta S. and Tripathi M., A review of TiO2 nanoparticles, Chin. Sci. Bull. 56 (2011) 1639-1657.
DOI: 10.1007/s11434-011-4476-1
Google Scholar
[7]
Lazar M., Varghese S. and Nair S., Photocatalytic water treatment by titanium dioxide: Recent updates, Catalysts. 2 (2012) 572-601.
DOI: 10.3390/catal2040572
Google Scholar
[8]
Ran J., Zhang J., Yu J., Jaroniec M. and Qiao S. Z., Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting, Chem. Soc. Rev. 43 (2014) 7787-7812.
DOI: 10.1039/c3cs60425j
Google Scholar
[9]
Jin Q., Fujishima M., Iwaszuk A., Nolan M. and Tada H., Loading effect in copper(II) oxide cluster-surface-modified titanium(IV) oxide on visible- and UV-light activities, J. Phys. Chem. C. 117 (2013) 23848-23857.
DOI: 10.1021/jp4085525
Google Scholar
[10]
An X., Liu H., Qu J., Moniz S. J. A. and Tang J., Photocatalytic mineralisation of herbicide 2, 4, 5-trichlorophenoxyacetic acid: enhanced performance by triple junction Cu-TiO2-Cu2O and the underlying reaction mechanism, New. J. Chem. 39 (2015).
DOI: 10.1039/c4nj01317d
Google Scholar
[11]
Roslan N. A., Lintang H. O. and Yuliati L., Enhanced photocatalytic performance of copper- modified titanium dioxide prepared by UV reduction method, Adv. Mater. Res. 1112 (2015) 180-183.
DOI: 10.4028/www.scientific.net/amr.1112.180
Google Scholar
[12]
Yang J., Wang D., Han H. and Li C., Roles of cocatalysts in photocatalysis and photoelectrocatalysis, Acc. Chem. Res. 46 (2013) 1900-(1909).
DOI: 10.1021/ar300227e
Google Scholar
[13]
J. Ghijsen, L. H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G. A. Sawatzky and M. T. Czyzyk, Electronic structure of Cu2O and CuO, Phys. Rev. B. 38 (1988) 11322-11330.
DOI: 10.1103/physrevb.38.11322
Google Scholar
[14]
Dorogov M.V., Priezzheva A.N., Vlassov S., Kink I., Shulga E., Dorogin L.M., Lohmus R., Tyurkov M.N., Vikarchuk A.A. and Romanov A.E., Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth, Appl. Surf. Sc. 346 (2015).
DOI: 10.1016/j.apsusc.2015.03.211
Google Scholar
[15]
M.V. Dorogov, O.A. Dovzhenko, N.N. Gryzunova, A.A. Vikarchuk and A.E. Romanov, New functional materials based on nanо- and micro-objects with developed surface, Acta Physica Polonica A. 128(4) (2015) 503-505.
DOI: 10.12693/aphyspola.128.503
Google Scholar
[16]
S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angewandte chem. international edition. 52(29) (2013) 7372–7408.
DOI: 10.1002/anie.201207199
Google Scholar