Tolerance of Hydrobionts to CeO2 Nanoparticles

Article Preview

Abstract:

Biological effects and ecotoxicity of NPs CeO2 with particle size Δ50 =16 nm and hydrobionts tolerance was measured in simulation based on test-reactions of a group of organisms representing major trophic levels of aquatic ecosystem. Biological activity of NPs CeO2 was noted against bacterial biosensor Ekolum, Сhlorella v. B., Paramecium c., Daphnia m. S. and Danio r. Toxicity and hazard level of NPs CeO2 were measured using biotesting and hydrobionts. Toxicity of NPs CeO2 against luminescent bacteria Ekolum and Paramecium c. and Danio r. was not established (L(E)С50 > 100 mg/l). In accordance with SGS and EC 93/67/EEC, NPs CeO2 is considered highly toxic (acute toxicity Level 1). Biomarkers and NPs CeO2 tolerant hydrobionts were determined. Range of tolerance of hydrobionts to NPs was established. The upper limit of tolerance was determined for certain hydrobionts by values of L(E)С50: 0.009 mg/l (by volume of Chl a) for Сhlorella v. B. and 46.15 mg/l (by mobility) for Daphnia m. S.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

211-218

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Brar, M. Verma, R.D. Tyagi, T.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts, Waste Management. 30 (2010) 504-520.

DOI: 10.1016/j.wasman.2009.10.012

Google Scholar

[2] A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, D.R. Baer, Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles, Surf. Interface Anal. 44 (2012).

DOI: 10.1002/sia.5006

Google Scholar

[3] V. Shah, S. Shah, H. Shah, F.J. Rispoli, K.T. McDonnell, S. Workeneh, A. Karakoti, A. Kumar, S. Seal, Antibacterial activity of polymer coated cerium oxide nanoparticles, PLoS One, 7(10): e47827 (2012) doi: 10. 1371/journal. pone. 0047827.

DOI: 10.1371/journal.pone.0047827

Google Scholar

[4] N.S. Taylor, R. Merrifield, T.D. Williams, J.K. Chipman, J.R. Lead, M.R. Viant, Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations, Nanotoxicol., 10(1): 32-41 (2015).

DOI: 10.3109/17435390.2014.1002868

Google Scholar

[5] M.A. Maurer-Jones, I.L. Gunsolus, C. J. Murphy and C.L. Haynes, Toxicity of Engineered Nanoparticles in the Environment, Anal. Chem., 85(6) (2013) 3036-3049.

DOI: 10.1021/ac303636s

Google Scholar

[6] Yu.N. Morgalev, N.S. Khoch, T.G. Morgaleva, E.S. Gulik, G.A. Borilo, U.A. Bulatova, S. Yu. Morgalev and E.V. Ponyavina, Biotesting Nanomaterials: transmissibility of nanoparticles into a food chain, Nanotechnol. in Russia. 5 (2010) 11-12.

DOI: 10.1134/s1995078010110157

Google Scholar

[7] Microbiological and molecular genetic evaluation of the impact of nanomaterials on the representatives microbiocenosis, Federal Center of Hygiene and Epidemiology Rospotrebnadzora. Moscow (2010) 58.

Google Scholar

[8] Yu.N. Morgalev, T.G. Morgaleva, Yu.S. Grigoriev. Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles to modify the optical density of the test culture algae Chlorella (Chlorella vulgaris Beijer), FR. 1. 39. 2010. 09103.

Google Scholar

[9] OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition (2011).

DOI: 10.1787/9789264069923-en

Google Scholar

[10] A.A. Shlyk, Determination of chlorophylls and carotenoids in extracts of green leaves, Biochemical methods in plant physiology, Moscow, Nauka, (1971).

Google Scholar

[11] Yu.N. Morgalev, N.S. Khoch, T.G. Morgaleva, G.E. Dunaevsky, S. Yu. Morgalev. Bioassay methods safety of nanoparticles and nanomaterials, Methodological Guide. Tomsk, (2010).

Google Scholar

[12] Yu.N. Morgalev, T.G. Morgaleva, Yu.S. Grigoriev. Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles mortality test organism Daphnia magna Straus. FR. 1. 39. 2010. 09102.

Google Scholar

[13] OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems Test No. 202: Daphnia sp. Acute Immobilisation (2004) 12 p.

DOI: 10.1787/9789264069947-en

Google Scholar

[14] OECD 202 Guidelines For the Testing of Chemicals, Daphnia sp., Acute Immobilisation Test and Reproduction Test (1984).

DOI: 10.1787/9789264069947-en

Google Scholar

[15] Nanomaterials and superfine materials, production and consumption waste, sewage sludge containing of nanoparticles. Aquatic disperse systems. Index toxicity test-organism mortality Danio rerio, STO TSU 143-(2015).

Google Scholar

[16] OECD 203 Guideline for Testing of Chemicals. Fish. Acute Toxicity Test. (1992).

Google Scholar

[17] OECD 236 Guidelines for the Testing of Chemicals. Fish Embryo Acute Toxicity (FET) Test (2006).

DOI: 10.1787/9789264203709-en

Google Scholar

[18] Globally Harmonized System of Classification and Labelling of Chemicals (GHS). The fifth revised edition. UN (2015).

DOI: 10.18356/925a27c1-en

Google Scholar

[19] Order # 511 of the Russian Ministry of Natural Resources, The criteria for classifying hazardous waste hazard class for the environment (200)1.

Google Scholar

[20] S. Yu. Morgalev, T.G. Morgaleva, Yu.N. Morgalev, I.A. Gosteva, Stability of Disperse Systems during Bioassay of Nanoecotoxicity with use of Aquatic Organisms, Adv. Mater. Res. 1085 (2015) 424-430.

DOI: 10.4028/www.scientific.net/amr.1085.424

Google Scholar

[21] A. Villem, P. Suman, S. Mariliis, M. Monika, M. Lutz, K. Anne, Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa, Environmental Science: Nano, 2 (2015) 630-644.

Google Scholar

[22] K. Van Hoecke, J.T.K. Quik, J. Mankiewicz-Boczek, K.A.C. De Schamphelaere, A. Elsaesser, P. Van der Meeren, C. Barnes, G. McKerr, C.V. Howard, D. Van De Meent, K. Rydzynski, K.A. Dawson, A. Salvati, A. Lesniak, I. Lynch, G. Silversmit, B. De Samber, L. Vincze and C.R. Janssen, Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests, Env. Sci. Technol. 43 (2009).

DOI: 10.1021/es9002444

Google Scholar

[23] H. -C. Holten, L. Nanna, B. Hartmann, A. Brinch, J. Kjølholt, A. Baun, Environmental effects of engineered nanomaterials Estimations of Predicted No-Effect, Concentrations (PNECs) Env. Project. 1787 (2015).

Google Scholar

[24] N.J. Rogers, N.M. Franklin, C. Apte et al, Physicochemical behavior and algal toxicity of nanoparticulate CeO2 in freshwater, Env. Chem. 7 (2010) 50-60.

Google Scholar

[25] P. Vallotton, B. Angel, M. Mccall, M. Osmond & J. Kirby, Imaging nanoparticle-algae interactions in three dimensions using Cytoviva microscopy, J. Microscopy. 257(2) (2015) 166-169.

DOI: 10.1111/jmi.12199

Google Scholar

[26] L. Song, M.G. Vijver, G. R. de Snoo and W.G.M. Peijnenburg, Assessing Toxicity of Copper Nanoparticles Across Five Cladoceran Species, Environmental Toxicology and Chemistry. 34(8) (2015) 1863–1869.

DOI: 10.1002/etc.3000

Google Scholar

[27] A. Farooq, L. Xiaoyi, Z. Ying, Y. Hongzhou, An in vivo evaluation of acute toxicity of cobalt ferrite (CoFe2O4) nanoparticles in larval-embryo Zebrafish (Danio rerio), Aquatic Toxicol. 166 (2015) 21-28.

DOI: 10.1016/j.aquatox.2015.07.003

Google Scholar

[28] B. Mansouri, A. Maleki, S.A. Johari, N. Reshahmanish, Effects of cobalt oxide nanoparticles and cobalt ions on gill histopathology of zebrafish (Danio rerio), AACL Bioflux. 8(3) (2015) 438-444.

Google Scholar