[1]
LF Abaeva, VI Shumsky, EN Petritskaya DA Rogatkin PN Lubchenco, Nanoparticles and nanotechnology today and tomorrow, Almanac of clinical medicine, 22 (2010) 10-17 (in Russian).
Google Scholar
[2]
Harmful chemicals. Inorganic compounds of elements I - IV groups. Reference under. Tot. Ed. VA Filov.: L., Chemistry, Leningrad branch, (1988) 61-80 (in Russian).
Google Scholar
[3]
JS Taurozzia, H Arulb, VZ Bosakc, AF Burbanc, TC Voicea, ML Brueningd, VV Tarabaraa, Effect of filler incorporation route on the properties of polysulfone–silver nanocomposite membranes of different porosities, Journal of Membrane Science, 325, 1 (2008).
DOI: 10.1016/j.memsci.2008.07.010
Google Scholar
[4]
NV Ayala-Núñez, HH Lara, L Ixtepan, C Rodríguez, Silver nanoparticles toxicity and bactericidal effect against methicillinresistant Staphylococcus aureus: Nanoscale does matter, Nanobiotechnology, 5 (2009) 2-9.
DOI: 10.1007/s12030-009-9029-1
Google Scholar
[5]
S Pal, YK Tak, JM Song, Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia 113 coli, Applied and Environmental Microbiology, 73, 6 (2007) 1712-1720.
DOI: 10.1128/aem.02218-06
Google Scholar
[6]
A Dror-Ehre, H Mamane, T Belenkova, G Markovich, A Adin, Silver nanoparticles - E. coli colloidal interaction in water and their effect on E. coli survival, Journal of Colloid and Interface Science, 339, 2 (2009) 521- 526.
DOI: 10.1016/j.jcis.2009.07.052
Google Scholar
[7]
JS Kim, E Kuk, KN Yu et al., Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnology, Biology, and Medicine, 3 (2007) 95-101.
Google Scholar
[8]
T Theivasanthi, M Alagar, Studies of Copper Nanoparticles Effects on Micro-organisms, Scholars Research Library Annals of Biological Research, 2, 3 (2011) 368-373.
Google Scholar
[9]
A Godymchuk, G Frolov, A Gusev, O Zakharova, E Yunda, D Kuznetsov and E Kolesnikov, Antibacterial Properties of Copper Nanoparticle Dispersions: Influence of Synthesis Conditions and Physicochemical Characteristics, IOP Conf. Series: Materials Science and Engineering 98 (2015).
DOI: 10.1088/1757-899x/98/1/012033
Google Scholar
[10]
Y Karasenkov, G Frolov, I Pogorelsky, N Latuta, A Gusev, D Kuznetsov, V Leont'ev, Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes, IOP Conf. Series: Materials Science and Engineering 98 (2015).
DOI: 10.1088/1757-899x/98/1/012038
Google Scholar
[11]
IA Hops, OA Koksharova, MA Radtsig, Antibacterial effect of silver ions: the effect on the growth of Gram-negative bacteria and the formation of biofilms, Molecular Genetics, Microbiology and Virology, 4 (2009) 27-31.
DOI: 10.3103/s0891416809040065
Google Scholar
[12]
S Arora, JM Rajwade, KM Paknikar, Nanotoxicology and in vitro studies: The need of the hour, Toxicology and Applied Pharmacology, 258 (2012) 151-165.
DOI: 10.1016/j.taap.2011.11.010
Google Scholar
[13]
I Soni, B Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study of E. coli as a model for gram-negative bacteria, J. Colloid Interface Sci., 275 (2004) 177-182.
DOI: 10.1016/j.jcis.2004.02.012
Google Scholar
[14]
PM Bychkouski AA treasure SO Solomevich, SY Shchegolev, Gold nanoparticles: synthesis, properties and application of biomedical, Russian Journal of biotherapeutic, 10, 3, (2011) 37-46 (in Russian).
Google Scholar
[15]
DS Dzhumagazieva, GN Maslyakova, LV Suleymanova, AB Bucharskaya, SS Firsova, BN Khlebtsov, GS Terentyuk, SM Kuhn, NG Khlebtsov, Study mutagenic action of gold nanoparticles in the micronucleus test, Bulletin of experimental Biology and medicine, 151, 6 (2011).
DOI: 10.1007/s10517-011-1427-4
Google Scholar
[16]
Y Cui, Y Zhao, Y Tian, W Zhang, X Lü, X Jiang, The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli, Biomaterials, 33 (2012) 2327-2333.
DOI: 10.1016/j.biomaterials.2011.11.057
Google Scholar
[17]
AN Grace, K Pandian, One pot synthesis of polymer protected gold nanoparticles and nanoprisms in glycerol, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 290, 1 (2006) 138-142.
DOI: 10.1016/j.colsurfa.2006.05.015
Google Scholar
[18]
P Prema, S Thangapandian, In-vitro antibacterial activity of gold nanoparticles capped with polysaccharide stabilizing agents, International Journal of Pharmacy and Pharmaceutical Sciences, 5, 1 (2013) 310-314.
Google Scholar
[19]
A Rai, A Prabhune, CC Perry, Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings, J Mater Chem., 20 (2010) 6789-6798.
DOI: 10.1039/c0jm00817f
Google Scholar
[20]
M F Zawrah, I Sherein, A El-Moez, Antimicrobial activities of gold nanoparticles against major foodborne pathogens, Life Science Journal, 8, 4 (2011) 37-44.
Google Scholar
[21]
NV Sotskaya, OV Dolgikh, VM Kashkarov, A Lenshin, EA Kotljarova, SV Makarov, Physical and chemical properties of the surface-modified nanoparticles of metals, Sorption and chromatographic processes, 9, 5 (2009) 643-652 (in Russian).
Google Scholar
[22]
OG Cherkasova, EY Shabalkina, Yu A. Kharitonov, SN Tsybuev VI Kochenov, Use of iron compounds in the treatment and diagnosis: Achievements and Challenges, STM, 3 (2012) 113-120 (in Russian).
Google Scholar
[23]
HS Shin, HC Choi, Y Jung, S B Kim, HJ Song, HJ Shin, Chemical and size effects of nanocomposites of silver and polyvinyl pyrrolidone determined by X-ray photoemission spectroscopy, Chem. Phys. Lett., 383 (2004) 418-422.
DOI: 10.1016/j.cplett.2003.11.054
Google Scholar