Influence of Metal-Containing Nanoparticles on the Content of Photosynthetic Pigments of Unicellular Alga Chlorella vulgaris Baijer

Article Preview

Abstract:

The research studies concentration effects and influence of nCeO2, nZnO, nNi and nPt on photosynthetic pigments in Chlorella v. B. in conditions of homeostated lab cultivation. It was shown that dependency of the content of chlorophylls and carotenoids in chlorella cells on concentrations of nCeO2, nZnO and nPt has non-linear dual-phase character. Growing concentrations of nNi in the culture solution caused monotone decrease of all photosynthetic pigments in chlorella cells. Adding 0.1 mg/L nZnO in the suspension caused a statistically significant increase of the chlorophyll a and b content (27.1 % and 64.2 % respectively) in comparison with the control sample. NPs Pt at 1 mg/L induced stimulating effect on chlorophylls a (17.4 % compared to the control) and b (23.6 % compared to the control) in chlorella cells. The number of carotenoids had a statistically significant decrease in chlorella cells by 25-70 % at high concentrations (1-10 mg/L) for all tested NPs.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] X. Yang, H. Pan, P. Wang, F. Zhao, Particle-specific toxicity and bioavailability of cerium oxide (CeO2) nanoparticles to Arabidopsis thaliana, J. Hazard. Mater. (2016) In Press.

DOI: 10.1016/j.jhazmat.2016.03.054

Google Scholar

[2] G. Vale, K. Mehennaoui, S. Cambier, G. Libralato, S. Jomini, R. F. Domingos, Manufactured nanoparticles in the aquatic environment-biochemicalresponses on freshwater organisms: A critical overview, Aquat. Toxicol. 170 (2016) 162-174.

DOI: 10.1016/j.aquatox.2015.11.019

Google Scholar

[3] D. Lin, J. Ji, Z. Long, K. Yang, F. Wu, The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp., Water. Res. 46 (2012) 4477-4487.

DOI: 10.1016/j.watres.2012.05.035

Google Scholar

[4] C. Cerrillo, G. Barandika, A. Igartua, O. Areitioaurtena, G. Mendoza, Towards the standardization of nanoecotoxicity testing: Natural organic matter camouflages, the adverse effects of TiO2 and CeO2 nanoparticles on green microalgae, Sci. Total. Env. 543 (2016).

DOI: 10.1016/j.scitotenv.2015.10.137

Google Scholar

[5] S. Pakrashi, S. Dalai, N. Chandrasekaran, A. Mukherjee, Trophic transfer potential of aluminium oxide nanoparticles using representative primary producer (Chlorella ellipsoides) and a primary consumer (Ceriodaphnia dubia), Aquat. Toxicol. 152 (2014).

DOI: 10.1016/j.aquatox.2014.03.024

Google Scholar

[6] Yu.N. Morgalev, T.G. Morgaleva, Yu.S. Grigoriev. Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles to modify the optical density of the test culture algae Chlorella (Chlorella vulgaris Beijer), FR. 1. 39. 2010. 09103.

Google Scholar

[7] A.A. Shlyk, Determination of Chlorophylls and Carotenoids in Extracts of Green Leaves, Moscow, Nauka, (1971).

Google Scholar

[8] A.M. Gorky, Plant and Stress: Course of Lectures, Ekaterinburg, Ural State University, (2012).

Google Scholar

[9] N.D. Smashevsky, Practical Work on Plant Physiology, Astrakhan, Astrakhan State University, (2011).

Google Scholar

[10] N.D. Smashevsky, Photosynthesis and Ecology, Astrakhan, Astrakhan State University, (2012).

Google Scholar

[11] S. Yu. Morgalev, T.G. Morgaleva, Y.N. Morgalev, I.A. Gosteva, Stability of Disperse Systems during Bioassay of Nanoecotoxicity with use of Aquatic Organisms, Adv. Mater. Res. 1085 (2015) 424–429.

DOI: 10.4028/www.scientific.net/amr.1085.424

Google Scholar

[12] B. Zheng, T. Kong, X. Jing, T. Odoom-Wubah, X. Li, D. Sun, F. Lu, Y. Zheng, J. Huang, Q. Li, Plant-mediated synthesis of platinum nanoparticles and its bioreductive mechanism, J. Colloid Interf. Sci. 396 (2013) 138-145.

DOI: 10.1016/j.jcis.2013.01.021

Google Scholar

[13] A. Zieli´nska-Jurek, Z. Wei, I. Wysocka, P. Szweda, E. Kowalska, The effect of nanoparticles size on photocatalytic and antimicrobial properties of Ag-Pt/TiO2 photocatalysts, Appl. Surf. Sci. 353 (2015) 317-325.

DOI: 10.1016/j.apsusc.2015.06.065

Google Scholar

[14] D. Yuan, X-q. Shan, Q. Huai, B. Wen, X. Zhu, Uptake and distribution of rare earth elements in rice seeds cultured in fertilizer solution of rare earth elements, Chemosphere. 43 (2001) 327–337.

DOI: 10.1016/s0045-6535(00)00142-9

Google Scholar

[15] L. Wang, J. Li, Q. Zhou, G. Yang, X.L. Ding, X. Li, C.X. Cai, Z. Zhang, H.Y. Wei, T.H. Lu, X.W. Deng, X.H. Huang, Rare earth elements activate endocytosis in plantcells, P. Natl. Acad. Sci. USA. 111(35) (2014) 12936-12941.

DOI: 10.1073/pnas.1413376111

Google Scholar

[16] Q. Wang, X. Ma, W. Zhang, H. Pei, Y. Chen, The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L. ) and its implications forfood safety, Metallomics. 4(10) (2012) 1105-1112.

DOI: 10.1039/c2mt20149f

Google Scholar

[17] D. Minetto, A. Volpi Ghirardini, G. Libralato, Saltwater ecotoxicology of Ag, Au, CuO, TiO2, ZnO and C60 engineered nanoparticles: An overview, Environ. Int. 92–93 (2016) 189-201.

DOI: 10.1016/j.envint.2016.03.041

Google Scholar

[18] G. Mustafa, S. Komatsu, Toxicity of heavy metals and metal-containing nanoparticles on plants, Biochim. Biophys. Acta. (2016) In Press.

Google Scholar

[19] T.Y. Suman, S.R. Radhika Rajasree, R. Kirubagaran, Evaluation of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis, Ecotox. Env. Safety. 113 (2015) 23-30.

DOI: 10.1016/j.ecoenv.2014.11.015

Google Scholar

[20] B. Hafeez, Y.M. Khanif, M. Saleem, Role of Zinc in Plant Nutrition- A Review, Am. J. Exp. Agr. 3(2) (2013) 374-391.

Google Scholar

[21] S. Dinesh Kumar, P. Santhanam, S. Ananth, A. Shenbaga Devi, R. Nandakumar, B. Balaji Prasath, S. Jeyanthi, T. Jayalakshmi, P. Ananthi, Effect of different dosages of zinc on the growth and biomass in five marine microalga, Int. J. Fish. Aquacult. 6(1) (2014).

DOI: 10.1007/978-3-642-38200-0_8

Google Scholar

[22] N. Gong, K. Shao, W. Feng, Z. Lin, C. Liang, Y. Sun, Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris, Chemosphere. 83 (2011) 510-516.

DOI: 10.1016/j.chemosphere.2010.12.059

Google Scholar

[23] I. Domonkos, M. Kis, Z. Gombos, Versatile roles of lipids and carotenoids in membranes, Acta Biol. Szeged. 59 (2015) 83-104.

Google Scholar

[24] R.J. Cogdell, Carotenoids in photosynthesis, Pure. Appl. Chem. 57(5) (1985) 723-728.

Google Scholar