Range of Resistance of Hydrobionts to Medium Contamination with Manufactured Nanoparticles

Article Preview

Abstract:

An assessment was performed to estimate ecological and biological effects of metallic and binary NPs of various chemical nature and structural characteristics. Application of rapid toxicity tests using hydrobionts of various trophic levels (E. coli, Сhlorella v. B., Paramecium c., Daphnia m. S., Danio r.) allowed to determine resistance range to NPs Ni, Pt, ZnO and CeO2. It was established that test reaction to contamination of water with NPs and development of adverse effects to phyto- and zooplankton is contingent on NPs physicochemical properties and sensitivity of hydrobionts. Concentrations of NPs not causing observed change of test reactions were determined. Chlorella v. B. was established to be the most vulnerable to contamination of medium with NPs; photosynthetic pigment quantity was determined to be the most sensitive parameter: nCeO2 L(E)С10 = 0.0007 mg/l, nNi L(E)С10 = 0.0015 mg/l, nZnO L(E)С10 = 0.0048 mg/l, nPt L(E)С10 = 0.033 mg/l. The highest resistance (L(E)С10 > 100 mg/l) to contamination shown by: E. Coli, Daphnia m. S., Danio r. to nPt ; Danio r. to NNi and nZnO, E. Coli, Paramecium c. to nCeO2; and Danior r. by the parameter ‘embryotoxicity’. The most vulnerable chains of trophic structure of communities were revealed as well as ways of disrupting food pyramid of an aquatic system. Range of resistance or range of concentrations within which biota retains resistance was shown to be an integral characteristic of NPs effects on ecosystems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

279-287

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.K. Brar, M. Verma, R.D. Tyagi, T.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts, Waste Management. 30 (2010) 504-520.

DOI: 10.1016/j.wasman.2009.10.012

Google Scholar

[2] A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, D.R. Baer, Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles, Surf. Interface Anal. 44 (2012).

DOI: 10.1002/sia.5006

Google Scholar

[3] V. Shah, S. Shah, H. Shah, F.J. Rispoli, K.T. McDonnell, S. Workeneh, A. Karakoti, A.  Kumar, S. Seal, Antibacterial activity of polymer coated cerium oxide nanoparticles, PLoS One. 7 (10) (2012) e47827.

DOI: 10.1371/journal.pone.0047827

Google Scholar

[4] N.S. Taylor, R. Merrifield, T.D. Williams, J.K. Chipman, J.R. Lead, M.R. Viant, Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations, Nanotoxicol. 10 (1) (2016).

DOI: 10.3109/17435390.2014.1002868

Google Scholar

[5] N. Sounderya, Y. Zhang, Use of Core/Shell Structured Nanoparticles for Biomedical Applications, Rec. Patents on Biomed. Eng. 1 (2008) 34-42.

DOI: 10.2174/1874764710801010034

Google Scholar

[6] W. Chiu, P. Khiew, M. Cloke, D. Isa, H. Lim, Т. Tan, N. Huang, S. Radiman, R. Abd-Shukor, M. Hamid, C. Chia, Heterogeneous Seeded Growth: Synthesis and Characterization of Bifunctional Fe3O4/ZnO Core/Shell Nanocrystals, J. Phys. Chem. C. 114 (2010).

DOI: 10.1021/jp100848m

Google Scholar

[7] K.Y. Ahn, K. Kwon, et al., A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure, Biosensors & Bioelectronics. 28 (1) (2011) 378-385.

DOI: 10.1016/j.bios.2011.07.052

Google Scholar

[8] M. Ovissipour, B. Rasc, S. Sablani, Impact of Engineered Nanoparticles on Aquatic Organisms, J. Fisheries Livest Prod. 1 (3) (2013) http: /dx. doi. org/ 10. 4172/2332-2608. 1000e106.

DOI: 10.4172/2332-2608.1000e106

Google Scholar

[9] R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloid Surf. B. 79 (2010) 5-18.

DOI: 10.1016/j.colsurfb.2010.03.029

Google Scholar

[10] W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Z. Sun, Role of the dissolved zinc ion and eactive oxygen species in cytotoxicity of ZnO nanoparticles, Toxicol. Let. 119 (3) (2010) 389-397.

DOI: 10.1016/j.toxlet.2010.10.003

Google Scholar

[11] Melissa A. Maurer-Jones, Ian L. Gunsolus, Catherine J. Murphy and Christy L. Haynes, Toxicity of Engineered Nanoparticles in the Environment, Anal. Chem., 85(6) (2013) 3036-3049.

DOI: 10.1021/ac303636s

Google Scholar

[12] Microbiological and molecular genetic evaluation of the impact of nanomaterials on the representatives microbiocenosis, Federal Center of Hygiene and Epidemiology Rospotrebnadzora. Moscow (2010).

Google Scholar

[13] Yu.N. Morgalev, T.G. Morgaleva, Yu.S. Grigoriev. Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles to modify the optical density of the test culture algae Chlorella (Chlorella vulgaris Beijer), FR. 1. 39. 2010. 09103.

Google Scholar

[14] OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition (2011).

DOI: 10.1787/9789264069923-en

Google Scholar

[15] Manual: Phyto-PAM - Phytoplankton Analyzer, Heinz Walz GmbH (2003) 135.

Google Scholar

[16] Yu.N. Morgalev, N.S. Khoch, T.G. Morgaleva, G.E. Dunaevsky, S. Yu. Morgalev. Bioassay methods safety of nanoparticles and nanomaterials, Methodological Guide. Tomsk (2010).

Google Scholar

[17] Yu.N. Morgalev, T.G. Morgaleva, Yu.S. Grigoriev. Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles mortality test organism Daphnia magna Straus. FR. 1. 39. 2010. 09102.

Google Scholar

[18] OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems Test No. 202: Daphnia sp. Acute Immobilisation. (2004).

DOI: 10.1787/9789264069947-en

Google Scholar

[19] OECD 202 Guidelines for the Testing of Chemicals, Daphnia sp., Acute Immobilisation Test and Reproduction Test (1984).

DOI: 10.1787/9789264069947-en

Google Scholar

[20] Nanomaterials and superfine materials, production and consumption waste, sewage sludge containing of nanoparticles. Aquatic disperse systems. Index toxicity test-organism mortality Danio rerio, STO TSU 143 (2015).

Google Scholar

[21] OECD 203 Guideline for testing of chemicals. Fish. Acute Toxicity Test. (1992) 1-9.

Google Scholar

[22] OECD 236 Guidelines For the Testing of Chemicals. Fish Embryo Acute Toxicity (FET) Test (2006).

DOI: 10.1787/9789264203709-en

Google Scholar

[23] Globally Harmonized System of Classification and Labelling of Chemicals (GHS). The fifth revised edition. UN. (2015).

DOI: 10.18356/925a27c1-en

Google Scholar

[24] Order 511of the Russian Ministry of Natural Resources, The criteria for classifying hazardous waste hazard class for the environment (2001).

Google Scholar

[25] S. Yu. Morgalev, T.G. Morgaleva, Yu.N. Morgalev, I.A. Gosteva, Stability of Disperse Systems during Bioassay of Nanoecotoxicity with use of Aquatic Organisms, Adv. Mater. Res. 1085 (2015) 424-430.

DOI: 10.4028/www.scientific.net/amr.1085.424

Google Scholar

[26] I.A. Gosteva, Yu.N. Morgalev, T.G. Morgaleva, S. Yu. Morgalev, Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms, IOP Conf. Ser.: Mater. Sci. Eng. 98 (2015) 012007.

DOI: 10.1088/1757-899x/98/1/012007

Google Scholar

[27] T.G. Morgaleva, Yu.N. Morgalev, I.A. Gosteva, S. Yu. Morgalev, Research of nickel nanoparticles toxicity with use of Aquatic Organisms, IOP Conf. Series: Mater. Scie. Eng. 98 (2015) 012012.

DOI: 10.1088/1757-899x/98/1/012012

Google Scholar

[28] Yu.N. Morgalev, T.G. Morgaleva, I.A. Gosteva, S. Yu. Morgalev, S.P. Kulizhskiy, T.P. Astafurova, Assessment of Environmental Toxicity of Zinc Oxide Nanoparticles Using Aquatic Organisms, IOP Conf. Ser.: Mater. Sci. Eng. 98 (2015) 012012.

DOI: 10.1088/1757-899x/98/1/012012

Google Scholar

[29] K. Van Hoecke, J.T.K. Quik, J. Mankiewicz-Boczek, K.A.C. De Schamphelaere, A. Elsaesser, P. Van der Meeren, C. Barnes, G. McKerr, C.V. Howard, D. Van De Meent, K. Rydzynski, K.A. Dawson, A. Salvati, A. Lesniak, I. Lynch, G. Silversmit, B. De Samber, L. Vincze and C.R. Janssen, Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests, Env. Sci. Technol. 43 (2009).

DOI: 10.1021/es9002444

Google Scholar

[30] S. Lopes, F. Ribeiro, J. Wojnarowicz, W. Łojkowski, K. Jurkschat, A. Crossley, A. Soares and S. Loureiro. Zinc oxide nanoparticles toxicity to Daphnia Magna: size-dependent effects and dissolution, Env. Toxicol. Chem. 33 (1) (2014) 190-198.

DOI: 10.1002/etc.2413

Google Scholar

[31] J. Liu, D. Fan, L. Wang, L. Shi, J. Ding, Y. Chen, SH. Shen. Effects of ZnO, CuO, Au and TiO2 nanoparticles on Daphnia Magna and early life stages of Zebrafish Danio Rerio, Env. Protection Eng. 40 (1) (2014) 139-149.

DOI: 10.37190/epe140111

Google Scholar

[32] Villem Aruoja, Suman Pokhrel, Mariliis Sihtmäe, Monika Mortimer, Lutz Mädlerb and Anne Kahrua, Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa, Env. Sci: Nano. 2 (2015) 630-644.

DOI: 10.1039/c5en00057b

Google Scholar

[33] H. Pendashte, F. Shariati, A. Keshavarz and Z. Ramzanpour. Toxicity of Zinc Oxide Nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus Algae Species, World J. Fish and Marine Sci. 5 (5) (2013) 563-570.

Google Scholar

[34] Aline A. Becaro, Claudio M. Jonsson, Fernanda C. Puti, Maria Celia Siqueira, Luiz H.C. Mattoso, Daniel S. Correa, Marcos D. Ferreira, Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustacean, Env. Nanotechnology, Monitoring & Manag. 3 (2015).

DOI: 10.1016/j.enmm.2014.11.002

Google Scholar

[35] S. Pakrashia, S. Dalaia, T.C. Prathna, S. Trivedia, R. Mynenia, A.M. Raichurb, N. Chandrasekarana, A. Mukherjee, Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations, Aqu. Toxicol. 132 (2013).

DOI: 10.1016/j.aquatox.2013.01.018

Google Scholar

[36] Xina Qi, Rotchellc Jeanette M., Chenga Jinping, Yia Jun and Zhanga Qiang, Silver nanoparticles affect the neural development of zebrafish embryos, J. Appl. Toxicol. 35 (2015) 1481-1492.

DOI: 10.1002/jat.3164

Google Scholar

[37] N. Gong, K. Shao,  W. Feng,  Z. Lin, C. Liang, Y. Sun. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris, Chemosphere. 83 (4) (2011) 510-516.

DOI: 10.1016/j.chemosphere.2010.12.059

Google Scholar

[38] R.J. Griffitt, J. Luo, J. Gao, J.C. Bonzongo and D.S. Barber. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms, Env. Tox. Chem. 27 (9) (2008) 1972-(1978).

DOI: 10.1897/08-002.1

Google Scholar

[39] J. A. Kovrižnych, R. Sotnikova, D. Zeljenkova, E. Rollerova, E. Szabova, Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio, Interdiscip. Toxicol. 7(1) (2014) 23-26.

DOI: 10.2478/intox-2014-0004

Google Scholar

[40] Monika Mortimer, Kaja Kasemets, Anne Kahru, Toxiciti of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila, Tox. 10 (2010) 182-189.

DOI: 10.1016/j.tox.2009.07.007

Google Scholar