[1]
S.K. Brar, M. Verma, R.D. Tyagi, T.Y. Surampalli, Engineered nanoparticles in wastewater and wastewater sludge – evidence and impacts, Waste Management. 30 (2010) 504-520.
DOI: 10.1016/j.wasman.2009.10.012
Google Scholar
[2]
A.S. Karakoti, P. Munusamy, K. Hostetler, V. Kodali, S. Kuchibhatla, G. Orr, J.G. Pounds, J.G. Teeguarden, B.D. Thrall, D.R. Baer, Preparation and characterization challenges to understanding environmental and biological impacts of nanoparticles, Surf. Interface Anal. 44 (2012).
DOI: 10.1002/sia.5006
Google Scholar
[3]
V. Shah, S. Shah, H. Shah, F.J. Rispoli, K.T. McDonnell, S. Workeneh, A. Karakoti, A. Kumar, S. Seal, Antibacterial activity of polymer coated cerium oxide nanoparticles, PLoS One. 7 (10) (2012) e47827.
DOI: 10.1371/journal.pone.0047827
Google Scholar
[4]
N.S. Taylor, R. Merrifield, T.D. Williams, J.K. Chipman, J.R. Lead, M.R. Viant, Molecular toxicity of cerium oxide nanoparticles to the freshwater alga Chlamydomonas reinhardtii is associated with supra-environmental exposure concentrations, Nanotoxicol. 10 (1) (2016).
DOI: 10.3109/17435390.2014.1002868
Google Scholar
[5]
N. Sounderya, Y. Zhang, Use of Core/Shell Structured Nanoparticles for Biomedical Applications, Rec. Patents on Biomed. Eng. 1 (2008) 34-42.
DOI: 10.2174/1874764710801010034
Google Scholar
[6]
W. Chiu, P. Khiew, M. Cloke, D. Isa, H. Lim, Т. Tan, N. Huang, S. Radiman, R. Abd-Shukor, M. Hamid, C. Chia, Heterogeneous Seeded Growth: Synthesis and Characterization of Bifunctional Fe3O4/ZnO Core/Shell Nanocrystals, J. Phys. Chem. C. 114 (2010).
DOI: 10.1021/jp100848m
Google Scholar
[7]
K.Y. Ahn, K. Kwon, et al., A sensitive diagnostic assay of rheumatoid arthritis using three-dimensional ZnO nanorod structure, Biosensors & Bioelectronics. 28 (1) (2011) 378-385.
DOI: 10.1016/j.bios.2011.07.052
Google Scholar
[8]
M. Ovissipour, B. Rasc, S. Sablani, Impact of Engineered Nanoparticles on Aquatic Organisms, J. Fisheries Livest Prod. 1 (3) (2013) http: /dx. doi. org/ 10. 4172/2332-2608. 1000e106.
DOI: 10.4172/2332-2608.1000e106
Google Scholar
[9]
R. Dastjerdi, M. Montazer, A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties, Colloid Surf. B. 79 (2010) 5-18.
DOI: 10.1016/j.colsurfb.2010.03.029
Google Scholar
[10]
W. Song, J. Zhang, J. Guo, J. Zhang, F. Ding, L. Li, Z. Sun, Role of the dissolved zinc ion and eactive oxygen species in cytotoxicity of ZnO nanoparticles, Toxicol. Let. 119 (3) (2010) 389-397.
DOI: 10.1016/j.toxlet.2010.10.003
Google Scholar
[11]
Melissa A. Maurer-Jones, Ian L. Gunsolus, Catherine J. Murphy and Christy L. Haynes, Toxicity of Engineered Nanoparticles in the Environment, Anal. Chem., 85(6) (2013) 3036-3049.
DOI: 10.1021/ac303636s
Google Scholar
[12]
Microbiological and molecular genetic evaluation of the impact of nanomaterials on the representatives microbiocenosis, Federal Center of Hygiene and Epidemiology Rospotrebnadzora. Moscow (2010).
Google Scholar
[13]
Yu.N. Morgalev, T.G. Morgaleva, Yu.S. Grigoriev. Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles to modify the optical density of the test culture algae Chlorella (Chlorella vulgaris Beijer), FR. 1. 39. 2010. 09103.
Google Scholar
[14]
OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition (2011).
DOI: 10.1787/9789264069923-en
Google Scholar
[15]
Manual: Phyto-PAM - Phytoplankton Analyzer, Heinz Walz GmbH (2003) 135.
Google Scholar
[16]
Yu.N. Morgalev, N.S. Khoch, T.G. Morgaleva, G.E. Dunaevsky, S. Yu. Morgalev. Bioassay methods safety of nanoparticles and nanomaterials, Methodological Guide. Tomsk (2010).
Google Scholar
[17]
Yu.N. Morgalev, T.G. Morgaleva, Yu.S. Grigoriev. Method of determining the toxicity index nanopowders products from nanomaterials, nano-coatings, waste and sewage sludge containing nanoparticles mortality test organism Daphnia magna Straus. FR. 1. 39. 2010. 09102.
Google Scholar
[18]
OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems Test No. 202: Daphnia sp. Acute Immobilisation. (2004).
DOI: 10.1787/9789264069947-en
Google Scholar
[19]
OECD 202 Guidelines for the Testing of Chemicals, Daphnia sp., Acute Immobilisation Test and Reproduction Test (1984).
DOI: 10.1787/9789264069947-en
Google Scholar
[20]
Nanomaterials and superfine materials, production and consumption waste, sewage sludge containing of nanoparticles. Aquatic disperse systems. Index toxicity test-organism mortality Danio rerio, STO TSU 143 (2015).
Google Scholar
[21]
OECD 203 Guideline for testing of chemicals. Fish. Acute Toxicity Test. (1992) 1-9.
Google Scholar
[22]
OECD 236 Guidelines For the Testing of Chemicals. Fish Embryo Acute Toxicity (FET) Test (2006).
DOI: 10.1787/9789264203709-en
Google Scholar
[23]
Globally Harmonized System of Classification and Labelling of Chemicals (GHS). The fifth revised edition. UN. (2015).
DOI: 10.18356/925a27c1-en
Google Scholar
[24]
Order 511of the Russian Ministry of Natural Resources, The criteria for classifying hazardous waste hazard class for the environment (2001).
Google Scholar
[25]
S. Yu. Morgalev, T.G. Morgaleva, Yu.N. Morgalev, I.A. Gosteva, Stability of Disperse Systems during Bioassay of Nanoecotoxicity with use of Aquatic Organisms, Adv. Mater. Res. 1085 (2015) 424-430.
DOI: 10.4028/www.scientific.net/amr.1085.424
Google Scholar
[26]
I.A. Gosteva, Yu.N. Morgalev, T.G. Morgaleva, S. Yu. Morgalev, Effect of AL2O3 and TiO2 nanoparticles on aquatic organisms, IOP Conf. Ser.: Mater. Sci. Eng. 98 (2015) 012007.
DOI: 10.1088/1757-899x/98/1/012007
Google Scholar
[27]
T.G. Morgaleva, Yu.N. Morgalev, I.A. Gosteva, S. Yu. Morgalev, Research of nickel nanoparticles toxicity with use of Aquatic Organisms, IOP Conf. Series: Mater. Scie. Eng. 98 (2015) 012012.
DOI: 10.1088/1757-899x/98/1/012012
Google Scholar
[28]
Yu.N. Morgalev, T.G. Morgaleva, I.A. Gosteva, S. Yu. Morgalev, S.P. Kulizhskiy, T.P. Astafurova, Assessment of Environmental Toxicity of Zinc Oxide Nanoparticles Using Aquatic Organisms, IOP Conf. Ser.: Mater. Sci. Eng. 98 (2015) 012012.
DOI: 10.1088/1757-899x/98/1/012012
Google Scholar
[29]
K. Van Hoecke, J.T.K. Quik, J. Mankiewicz-Boczek, K.A.C. De Schamphelaere, A. Elsaesser, P. Van der Meeren, C. Barnes, G. McKerr, C.V. Howard, D. Van De Meent, K. Rydzynski, K.A. Dawson, A. Salvati, A. Lesniak, I. Lynch, G. Silversmit, B. De Samber, L. Vincze and C.R. Janssen, Fate and effects of CeO2 nanoparticles in aquatic ecotoxicity tests, Env. Sci. Technol. 43 (2009).
DOI: 10.1021/es9002444
Google Scholar
[30]
S. Lopes, F. Ribeiro, J. Wojnarowicz, W. Łojkowski, K. Jurkschat, A. Crossley, A. Soares and S. Loureiro. Zinc oxide nanoparticles toxicity to Daphnia Magna: size-dependent effects and dissolution, Env. Toxicol. Chem. 33 (1) (2014) 190-198.
DOI: 10.1002/etc.2413
Google Scholar
[31]
J. Liu, D. Fan, L. Wang, L. Shi, J. Ding, Y. Chen, SH. Shen. Effects of ZnO, CuO, Au and TiO2 nanoparticles on Daphnia Magna and early life stages of Zebrafish Danio Rerio, Env. Protection Eng. 40 (1) (2014) 139-149.
DOI: 10.37190/epe140111
Google Scholar
[32]
Villem Aruoja, Suman Pokhrel, Mariliis Sihtmäe, Monika Mortimer, Lutz Mädlerb and Anne Kahrua, Toxicity of 12 metal-based nanoparticles to algae, bacteria and protozoa, Env. Sci: Nano. 2 (2015) 630-644.
DOI: 10.1039/c5en00057b
Google Scholar
[33]
H. Pendashte, F. Shariati, A. Keshavarz and Z. Ramzanpour. Toxicity of Zinc Oxide Nanoparticles to Chlorella vulgaris and Scenedesmus dimorphus Algae Species, World J. Fish and Marine Sci. 5 (5) (2013) 563-570.
Google Scholar
[34]
Aline A. Becaro, Claudio M. Jonsson, Fernanda C. Puti, Maria Celia Siqueira, Luiz H.C. Mattoso, Daniel S. Correa, Marcos D. Ferreira, Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustacean, Env. Nanotechnology, Monitoring & Manag. 3 (2015).
DOI: 10.1016/j.enmm.2014.11.002
Google Scholar
[35]
S. Pakrashia, S. Dalaia, T.C. Prathna, S. Trivedia, R. Mynenia, A.M. Raichurb, N. Chandrasekarana, A. Mukherjee, Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations, Aqu. Toxicol. 132 (2013).
DOI: 10.1016/j.aquatox.2013.01.018
Google Scholar
[36]
Xina Qi, Rotchellc Jeanette M., Chenga Jinping, Yia Jun and Zhanga Qiang, Silver nanoparticles affect the neural development of zebrafish embryos, J. Appl. Toxicol. 35 (2015) 1481-1492.
DOI: 10.1002/jat.3164
Google Scholar
[37]
N. Gong, K. Shao, W. Feng, Z. Lin, C. Liang, Y. Sun. Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris, Chemosphere. 83 (4) (2011) 510-516.
DOI: 10.1016/j.chemosphere.2010.12.059
Google Scholar
[38]
R.J. Griffitt, J. Luo, J. Gao, J.C. Bonzongo and D.S. Barber. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms, Env. Tox. Chem. 27 (9) (2008) 1972-(1978).
DOI: 10.1897/08-002.1
Google Scholar
[39]
J. A. Kovrižnych, R. Sotnikova, D. Zeljenkova, E. Rollerova, E. Szabova, Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio, Interdiscip. Toxicol. 7(1) (2014) 23-26.
DOI: 10.2478/intox-2014-0004
Google Scholar
[40]
Monika Mortimer, Kaja Kasemets, Anne Kahru, Toxiciti of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila, Tox. 10 (2010) 182-189.
DOI: 10.1016/j.tox.2009.07.007
Google Scholar